|
|
(23 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| <span style="font-size:11.0pt;mso-bidi-font-size: 12.0pt;font-family:Arial">AutoStructure – An automated NOESY assignment engine.<font class="Apple-style-span" face="sans-serif" size="3"><span class="Apple-style-span" style="font-size: 13px;"> </span></font><span class="Apple-style-span" style="font-family: sans-serif; font-size: 13px; "><span lang="FR" style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial;mso-ansi-language: FR">AutoStructure [1,2,3], written in C/C++ and Perl/Tk, uses a distinct bottom-up</span> topology-constrained approach for iterative NOE interpretation and structure determination. <span style="font-size:11.0pt;mso-bidi-font-size:12.0pt; font-family:Arial">AutoStructure first builds an initial chain fold based on | | AutoStructure <ref>Huang, Y.J., Tejero, R., Powers, R., and Montelione, G.T., A topology-constrained distance network algorithm for protein structure determination from NOESY data. Proteins, 2006. 62(3): p. 587-603.</ref> is an automated NOESY assignment engine, which uses a distinct bottom-up topology-constrained approach for iterative NOE interpretation and structure determination. AutoStructure first builds an initial chain fold based on intraresidue and sequential NOESY data, together with characteristic NOE patterns of secondary structures, including helical medium-range NOE interactions and interstrand b-sheet NOE interactions, and unambiguous long-range NOE interactions, based on chemical shift matching and NOESY spectral symmetry considerations. NOESY cross peaks that cannot be uniquely assigned using these methods are not used in the initial structure calculations. Once initial structures are generated and validated, additional NOESY cross peaks are iteratively assigned using the intermediate 3D structures and contact maps, together with knowledge of high-order topology constraints of alpha-helix and beta-sheet packing geometries. This protocol, in principle, resembles the method that an expert would utilize in manually solving a protein structure by NMR. |
| intraresidue and sequential NOESY data, together with characteristic NOE | |
| patterns of secondary structures, including helical medium-range NOE | |
| interactions and interstrand </span><span style="font-size:11.0pt;mso-bidi-font-size: 12.0pt;font-family:Symbol">b</span><span style="font-size:11.0pt;mso-bidi-font-size: 12.0pt;font-family:Arial">-sheet NOE interactions, and unambiguous long-range | |
| NOE interactions, based on chemical shift matching and NOESY spectral symmetry | |
| considerations. NOESY cross peaks that cannot be uniquely assigned using these | |
| methods are not used in the initial structure calculations.<span style="mso-spacerun: yes"> </span>Once initial structures are generated and validated, additional NOESY cross peaks are iteratively assigned using the intermediate 3D structures and contact maps, together with knowledge of high-order topology constraints of alpha-helix and beta-sheet packing geometries </span><span style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial">[82]</span><span style="font-size: 11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial">. This protocol, in | |
| principle, resembles the method that an expert would utilize in manually | |
| solving a protein structure by NMR.<span style="mso-spacerun: yes"> </span></span></span></span> | |
|
| |
|
| <span style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial"><o:p> </o:p></span> <!--[if gte vml 1]><v:shapetype
| | The input data for AutoStructure are: (i) resonance assignment table, (ii) 2D, 3D, and/or 4D NOESY peak lists, (iii) list of scalar coupling, RDC and slow amide exchange data. AutoStructure generates distance constraint lists and utilizes the programs DYANA/CYANA, Xplor for 3D structure generation on a Linux-based computer cluster. Fig. 1 shows AutoStructure results for three different human protein NMR test data sets: FGF-2, IL-13 and MMP-1, ranging in size from 113 to 169 amino-acid residues. The mean coordinate differences between structures determined by AutoStructure and by manual analysis (0.5 to 0.8 Å for backbone atoms of ordered residues) demonstrate good accuracy of these automated methods. |
| id="_x0000_t202" coordsize="21600,21600" o:spt="202" path="m0,0l0,21600,21600,21600,21600,0xe">
| | |
| <v:stroke joinstyle="miter"/>
| | [[Image:AS.jpg|left|307x229px|Ribbon diagrams of representative structures of FGF-2, MMP-1 and IL-13 proteins used for the validation of the AutoStructure process]] |
| <v:path gradientshapeok="t" o:connecttype="rect"/>
| | |
| </v:shapetype><v:shape id="_x0000_s1026" type="#_x0000_t202" style='position:absolute;
| | <br> |
| margin-left:234pt;margin-top:41pt;width:216.75pt;height:126pt;z-index:251656192;
| | |
| mso-wrap-edited:f' wrapcoords="0 0 21600 0 21600 21600 0 21600 0 0" filled="f">
| | {| cellspacing="1" cellpadding="1" border="1" style="width: 427px; height: 137px;" |
| <v:fill o:detectmouseclick="t"/>
| | |- |
| <v:textbox inset=".72pt,.72pt,.72pt,.72pt">
| | | Fig. 1. Ribbon diagrams of representative structures of FGF-2, MMP-1 and IL-13 proteins used for the validation of the AutoStructure process: (a) final structures from AutoStructure using XPLOR for stucture generation, (b) manual-analyzed structures deposited in PDB, analyzed using the same NMR data set, (c) structures determined by X-ray crystallography or third NMR group. Tabulated on the right are mean coordinate differences (Å) in secondary structure regions for backbone atoms between structures (a), (b) and (c). |
| <![if !mso]>
| | |} |
| <table cellpadding=0 cellspacing=0 width="100%">
| | |
| <tr>
| | <br> |
| <td><![endif]>
| | |
| <div>
| | <br> |
| <p class=MsoNormal style='line-height:10.0pt;mso-line-height-rule:exactly'><b
| | |
| style='mso-bidi-font-weight:normal'><span style='font-size:10.0pt;
| | <br> |
| font-family:Arial;mso-bidi-font-family:Arial'>Fig. 4.</span></b><span
| | |
| style='font-size:10.0pt;font-family:Arial;mso-bidi-font-family:Arial'> <span
| | AutoStructure's ‘bottom up’ strategy is quite different from the “top down” strategies used by the alternative programs CANDID and ARIA, which rely on “ambiguous constraints”. For NOESY spectra with poor signal-to-noise ratios, such automatically assigned ‘ambiguous constraint” sets may not include any true NOESY assignments, and result in small distortions of the protein structure which maybe avoided by the “bottom up” approach of AutoStructure. CANDID/CYANA also uses a ‘network anchoring” approach similar to, but less comprehensive than, the topology-constrained approach used by AutoStructure. For these reasons, some users may prefer to use both AutoStructure and CANDID/CYANA or ARIA in parallel to assess potential errors in automated NOESY cross peak assignments |
| class=WP9PageNumber><span style='mso-ansi-font-size:10.0pt'>Ribbon diagrams
| | |
| of representative structures of FGF-2, MMP-1 and IL-13 proteins used for
| | <br> <references /> |
| the validation of the AutoStructure process: (a) final structures from
| |
| AutoStructure<ins cite="mailto:CABM" datetime="2009-07-16T17:46"> using
| |
| XPLOR for stucture generation</ins>, (b) manual-analyzed structures
| |
| deposited in PDB, analyzed using the same NMR data set, (c) </span></span>structures
| |
| determined by X-ray crystallography or third NMR group.<span
| |
| style="mso-spacerun: yes"> </span>Tabulated on the right are mean
| |
| coordinate differences (Å) in secondary structure regions for backbone
| |
| atoms between structures (a), (b) and (c). </span></p>
| |
| </div>
| |
| <![if !mso]></td>
| |
| </tr>
| |
| </table>
| |
| <![endif]></v:textbox>
| |
| <w:wrap type="tight"/>
| |
| </v:shape><![endif]-->[[Image:|Text Box: Fig. 4. Ribbon diagrams of representative structures of FGF-2, MMP-1 and IL-13 proteins used for the validation of the AutoStructure process: (a) final structures from AutoStructure using XPLOR for stucture generation, (b) manual-analyzed structures deposited in PDB, analyzed using the same NMR data set, (c) structures determined by X-ray crystallography or third NMR group. Tabulated on the right are mean coordinate differences (Å) in secondary structure regions for backbone atoms between structures (a), (b) and (c). ]]<!--[if gte vml 1]><v:shapetype id="_x0000_t75"
| |
| coordsize="21600,21600" o:spt="75" o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe"
| |
| filled="f" stroked="f">
| |
| <v:stroke joinstyle="miter"/>
| |
| <v:formulas>
| |
| <v:f eqn="if lineDrawn pixelLineWidth 0"/>
| |
| <v:f eqn="sum @0 1 0"/>
| |
| <v:f eqn="sum 0 0 @1"/>
| |
| <v:f eqn="prod @2 1 2"/>
| |
| <v:f eqn="prod @3 21600 pixelWidth"/>
| |
| <v:f eqn="prod @3 21600 pixelHeight"/>
| |
| <v:f eqn="sum @0 0 1"/>
| |
| <v:f eqn="prod @6 1 2"/>
| |
| <v:f eqn="prod @7 21600 pixelWidth"/>
| |
| <v:f eqn="sum @8 21600 0"/>
| |
| <v:f eqn="prod @7 21600 pixelHeight"/>
| |
| <v:f eqn="sum @10 21600 0"/>
| |
| </v:formulas>
| |
| <v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"/>
| |
| <o:lock v:ext="edit" aspectratio="t"/>
| |
| </v:shapetype><v:shape id="Picture_x0020_65" o:spid="_x0000_s1027" type="#_x0000_t75"
| |
| style='position:absolute;margin-left:0;margin-top:39pt;width:216.5pt;height:150.5pt;
| |
| z-index:251659264;visibility:visible' wrapcoords="-200 0 -200 21507 21570 21507 21570 0 -200 0">
| |
| <v:imagedata src="file://localhost/Users/yphuang/Library/Caches/TemporaryItems/msoclip/0clip_image002.png"
| |
| o:title=""/>
| |
| <v:textbox style='mso-rotate-with-shape:t'/>
| |
| <w:wrap type="tight"/>
| |
| </v:shape><![endif]-->[[Image:]]<span style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial;mso-no-proof: yes" /> <span style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial;mso-no-proof: yes" /> <span style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial;mso-no-proof: yes" /> <span style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial;mso-no-proof: yes" /> <span style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial;mso-no-proof: yes" /> <span style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial;mso-no-proof: yes" /> <span style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial;mso-no-proof: yes" /> <span style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial;mso-no-proof: yes" /> <span style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial;mso-no-proof: yes" /> <span style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial;mso-no-proof: yes">This ‘bottom up’ strategy is quite different from the “top down”
| |
| strategies used by the alternative programs CANDID and ARIA, which rely on | |
| “ambiguous constraints”.<span style="mso-spacerun: yes"> </span>For NOESY spectra with poor signal-to-noise ratios, such automatically assigned ‘ambiguous constraint” sets may not include any true NOESY assignments, and result in distortions of the protein structure which can be avoided by the “bottom up” approach of AutoStructure </span><!--[if supportFields]><span | |
| style='font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial'><span
| |
| style='mso-element:field-begin'></span><span style="mso-spacerun:
| |
| yes"> </span>ADDIN EN.CITE
| |
| <EndNote><Cite><Author>Huang</Author><Year>2006</Year><RecNum>196</RecNum><record><rec-number>196</rec-number><foreign-keys><key
| |
| app="EN" db-id="fe29atzr4stwaueev2lxf2fgp5xx5pavz2a5">196</key></foreign-keys><ref-type
| |
| name="Journal
| |
| Article">17</ref-type><contributors><authors><author>Huang,
| |
| Y. J.</author><author>Tejero, R.</author><author>Powers,
| |
| R.</author><author>Montelione, G.
| |
| T.</author></authors></contributors><auth-address>Center
| |
| for Advanced Biotechnology and Medicine and Department of Molecular Biology and
| |
| Biochemistry, Rutgers University, Piscataway, New Jersey 08854-5638,
| |
| USA.</auth-address><titles><title>A topology-constrained
| |
| distance network algorithm for protein structure determination from NOESY
| |
| data</title><secondary-title>Proteins</secondary-title></titles><periodical><full-title>Proteins</full-title></periodical><pages>587-603</pages><volume>62</volume><number>3</number><dates><year>2006</year><pub-dates><date>Mar
| |
| 15</date></pub-dates></dates><accession-num>16374783</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=16374783
| |
| </url></related-urls></urls></record></Cite></EndNote><span
| |
| style='mso-element:field-separator'></span></span><![endif]--><span style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial">[4]</span><!--[if supportFields]><span
| |
| style='font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial'><span
| |
| style='mso-element:field-end'></span></span><![endif]--><span style="font-size: 11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial">.<span style="mso-spacerun: yes"> </span>CANDID/CYANA also uses a ‘network anchoring” approach similar to, but less comprehensive than, the topology-constrained approach used by AutoStructure </span><!--[if supportFields]><span style='font-size:11.0pt;
| |
| mso-bidi-font-size:12.0pt;font-family:Arial'><span style='mso-element:field-begin'></span><span
| |
| style="mso-spacerun: yes"> </span>ADDIN EN.CITE
| |
| <EndNote><Cite><Author>Huang</Author><Year>2006</Year><RecNum>196</RecNum><record><rec-number>196</rec-number><foreign-keys><key
| |
| app="EN"
| |
| db-id="fe29atzr4stwaueev2lxf2fgp5xx5pavz2a5">196</key></foreign-keys><ref-type
| |
| name="Journal Article">17</ref-type><contributors><authors><author>Huang,
| |
| Y. J.</author><author>Tejero,
| |
| R.</author><author>Powers,
| |
| R.</author><author>Montelione, G.
| |
| T.</author></authors></contributors><auth-address>Center
| |
| for Advanced Biotechnology and Medicine and Department of Molecular Biology and
| |
| Biochemistry, Rutgers University, Piscataway, New Jersey 08854-5638,
| |
| USA.</auth-address><titles><title>A topology-constrained
| |
| distance network algorithm for protein structure determination from NOESY
| |
| data</title><secondary-title>Proteins</secondary-title></titles><periodical><full-title>Proteins</full-title></periodical><pages>587-603</pages><volume>62</volume><number>3</number><dates><year>2006</year><pub-dates><date>Mar
| |
| 15</date></pub-dates></dates><accession-num>16374783</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=16374783
| |
| </url></related-urls></urls></record></Cite></EndNote><span
| |
| style='mso-element:field-separator'></span></span><![endif]--><span style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial">[4]</span><!--[if supportFields]><span
| |
| style='font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial'><span
| |
| style='mso-element:field-end'></span></span><![endif]--><span style="font-size: 11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial">.<span style="mso-spacerun: yes"> </span>For these reasons, some users may prefer to use both AutoStructure and CANDID/CYANA or ARIA in parallel to assess potential errors in automated NOESY cross peak assignments </span><!--[if supportFields]><span
| |
| style='font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial'><span
| |
| style='mso-element:field-begin'></span><span style="mso-spacerun:
| |
| yes"> </span>ADDIN EN.CITE
| |
| <EndNote><Cite><Author>Liu</Author><Year>2005</Year><RecNum>193</RecNum><record><rec-number>193</rec-number><foreign-keys><key
| |
| app="EN"
| |
| db-id="fe29atzr4stwaueev2lxf2fgp5xx5pavz2a5">193</key></foreign-keys><ref-type
| |
| name="Journal
| |
| Article">17</ref-type><contributors><authors><author>Liu,
| |
| G.</author><author>Shen, Y.</author><author>Atreya, H.
| |
| S.</author><author>Parish, D.</author><author>Shao,
| |
| Y.</author><author>Sukumaran, D. K.</author><author>Xiao,
| |
| R.</author><author>Yee, A.</author><author>Lemak,
| |
| A.</author><author>Bhattacharya,
| |
| A.</author><author>Acton, T.
| |
| A.</author><author>Arrowsmith, C.
| |
| H.</author><author>Montelione, G.
| |
| T.</author><author>Szyperski,
| |
| T.</author></authors></contributors><auth-address>Department
| |
| of Chemistry, University at Buffalo, State University of New York, Buffalo, NY
| |
| 14260, USA.</auth-address><titles><title>NMR data collection
| |
| and analysis protocol for high-throughput protein structure determination</title><secondary-title>Proc
| |
| Natl Acad Sci U S
| |
| A</secondary-title></titles><periodical><full-title>Proc
| |
| Natl Acad Sci U S
| |
| A</full-title></periodical><pages>10487-92</pages><volume>102</volume><number>30</number><keywords><keyword>Comparative
| |
| Study</keyword><keyword>Data Collection/methods</keyword><keyword>Fourier
| |
| Analysis</keyword><keyword>*Models,
| |
| Molecular</keyword><keyword>Nuclear Magnetic Resonance,
| |
| Biomolecular/*methods</keyword><keyword>Protein
| |
| Conformation</keyword><keyword>Proteins/*chemistry</keyword><keyword>Research
| |
| Support, N.I.H., Extramural</keyword><keyword>Research Support,
| |
| Non-U.S. Gov&apos;t</keyword><keyword>Research Support, U.S.
| |
| Gov&apos;t, Non-P.H.S.</keyword><keyword>Research Support, U.S.
| |
| Gov&apos;t, P.H.S.</keyword></keywords><dates><year>2005</year><pub-dates><date>Jul
| |
| 26</date></pub-dates></dates><accession-num>16027363</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=16027363
| |
| </url></related-urls></urls></record></Cite></EndNote><span
| |
| style='mso-element:field-separator'></span></span><![endif]--><span style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial">[83]</span><!--[if supportFields]><span
| |
| style='font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial'><span
| |
| style='mso-element:field-end'></span></span><![endif]--><span style="font-size: 11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial">. The AutoStructure program
| |
| has been used to determine 3D structures for most of the > 300 proteins
| |
| solved by the NESG consortium.<o:p></o:p></span> <span style="font-size:11.0pt;mso-bidi-font-size:12.0pt;font-family:Arial"><o:p> </o:p></span> <span>Fig. 4 shows AutoStructure results for three different human protein NMR
| |
| test data sets: FGF-2, IL-13 and MMP-1, ranging in size from 113 to 169
| |
| amino-acid residues. The mean coordinate differences between structures
| |
| determined by AutoStructure and by manual analysis (0.5 to 0.8 Å for backbone
| |
| atoms of ordered residues) demonstrate good accuracy of these automated
| |
| methods. <span style="color:blue"><span style="mso-spacerun: yes"> </span></span>The input data for AutoStructure are: (i) resonance assignment table, (ii) 2D, 3D, and/or 4D NOESY peak lists, (iii) list of scalar coupling, RDC and slow amide exchange data. AutoStructure generates distance constraint lists and utilizes the programs DYANA/CYANA, Xplor </span><span>for 3D structure
| |
| generation on a Linux-based computer cluster.</span><!--EndFragment-->
| |