Paramagnetic Constraints in Structure Determination: Difference between revisions
No edit summary |
No edit summary |
||
Line 933: | Line 933: | ||
== '''References''' == | == '''References''' == | ||
1. Liu, Y.Z., and Prestegard, J.H. (2008) Direct measurement of dipole-dipole/CSA cross-correlated relaxation by a constant-time experiment. ''J. Magn. Reson. 193'', 23-31. | [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2542487/?tool=pubmed 1. Liu, Y.Z., and Prestegard, J.H. (2008) Direct measurement of dipole-dipole/CSA cross-correlated relaxation by a constant-time experiment. ''J. Magn. Reson. 193'', 23-31.] | ||
2. Schwieters, C.D., Kuszewski, J.J., and Clore, G.M. (2006). Using Xplor-NIH for NMR molecular structure determination. ''Prog. NMR Spect. 48'', 47-62.<br> | 2. Schwieters, C.D., Kuszewski, J.J., and Clore, G.M. (2006). Using Xplor-NIH for NMR molecular structure determination. ''Prog. NMR Spect. 48'', 47-62.<br> | ||
3. Banci, L., Bertini, I., Cavallaro, G., Giachetti, A., Luchinat, C., and Parigi, G. (2004) Paramagnetism-based restraints for Xplor-NIH. ''J. Biomol. NMR 28'', 249-261. | [http://www.ncbi.nlm.nih.gov/pubmed/14752258?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=2 3. Banci, L., Bertini, I., Cavallaro, G., Giachetti, A., Luchinat, C., and Parigi, G. (2004) Paramagnetism-based restraints for Xplor-NIH. ''J. Biomol. NMR 28'', 249-261.] | ||
4. Valafar, H., and Prestegard, J.H. (2004) REDCAT: a residual dipolar coupling analysis tool. ''J. Magn. Reson. 167'', 228-241. | [http://www.ncbi.nlm.nih.gov/pubmed/15040978?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=6 4. Valafar, H., and Prestegard, J.H. (2004) REDCAT: a residual dipolar coupling analysis tool. ''J. Magn. Reson. 167'', 228-241.] | ||
5. <font face="Arial">Iwahara, J., Schwieters, C.D., and Clore, G.M. (2004) Ensemble approach for NMR structure refinement against | [http://www.ncbi.nlm.nih.gov/pubmed/15125681?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=2 5. <font face="Arial">Iwahara, J., Schwieters, C.D., and Clore, G.M. (2004) Ensemble approach for NMR structure refinement against (1)H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. ''J Am Chem Soc''. ''126'', 5879-96.</font>] |
Revision as of 16:48, 5 January 2010
Introduction
The collection of paramagnetic constraint data and the use of those data as a part of a structure determination is fairly straight forward. RDCs can be collected using either the J-modulation or HSQC-TROSY methods described in the RDC section. Paramagnetic relaxation enhancements (PREs) are collected based on attenuation of signal intensity in HSQC or TROSY spectra. When Curie contributions from paramagnetic metals dominate it will be convenient to make measurements at multiple field strengths as the effects are field squared dependent and field variation provides a useful way to probe different distance ranges. We have access to spectrometers operating from 600 to 900 MHz. Pseudocontact shifts (PCSs) are measured by comparison of HSQC (or TROSY) cross-peak positions in diamagnetic (La3+) and paramagnetic complexes (Dy3+ or Tb3+). Pairing of shifted and non-shifted peaks is facilitated by the fact that shifts in in both 1H and 15N dimensions are nearly equal on the ppm scale and are therefore connected by diagonal lines. Paramagnetic relaxation interferences (PRIs) produce differential effects on the α and β cross peaks of coupled HSQC spectra and the cross-correlation effects can be measured using experiments that we have developed for the measurement of correlation times from CSA/DD interference [1]. Integration of these data into structure characterization protocols in the NESG is accomplished using programs such as XPLOR-NIH [2,3] or REDCAT [4]. CYANA can also accommodate pseudocontact shifts.
Protocols
Generation of MTSL-cysteine pseudo-residue
Editing the Xplor/CNS topology library
Apply the following lines to protein-allhdg.top:
residue CYSM group atom N type=NH1 charge=-0.36 end atom HN type=H charge= 0.26 end atom CA type=CH1E charge= 0.00 end atom HA type=HA charge= 0.10 end atom CB type=CH2E charge=-0.20 end atom HB1 type=HA charge= 0.10 end atom HB2 type=HA charge= 0.10 end atom SG type=SH1E charge=-0.05 end ! atom HG type=H charge= 0.05 end atom C type=C charge= 0.48 end atom O type=O charge=-0.48 end ATOM CAE TYPE= CMAE CHARGE= 0.016 END ATOM CAL TYPE= CMAL CHARGE= 0.097 END ATOM CAF TYPE= CMAF CHARGE= 0.016 END ATOM NAI TYPE= NMAI CHARGE=-0.164 END ATOM OAB TYPE= OMAB CHARGE=-0.114 END ! ATOM HAA TYPE= MMAA CHARGE= 0.029 END ATOM CAK TYPE= CMAK CHARGE= 0.097 END ATOM CAC TYPE= CMAC CHARGE= 0.016 END ATOM CAD TYPE= CMAD CHARGE= 0.016 END ATOM CAG TYPE= CMAG CHARGE=-0.042 END ATOM CAJ TYPE= CMAJ CHARGE=-0.011 END ATOM CAH TYPE= CMAH CHARGE= 0.038 END ATOM SAA TYPE= SMAA CHARGE= 0.041 END ATOM HAG TYPE = MMA charge= 0.14 end !yizhou ATOM HAH1 type=MMA charge= 0.10 end ATOM HAH2 type=MMA charge= 0.10 end ATOM HAE1 type=MMA charge= 0.10 end ATOM HAE2 type=MMA charge= 0.10 end ATOM HAE3 type=MMA charge= 0.10 end ATOM HAF1 type=MMA charge= 0.10 end ATOM HAF2 type=MMA charge= 0.10 end ATOM HAF3 type=MMA charge= 0.10 end ATOM HAD1 type=MMA charge= 0.10 end ATOM HAD2 type=MMA charge= 0.10 end ATOM HAD3 type=MMA charge= 0.10 end ATOM HAC1 type=MMA charge= 0.10 end ATOM HAC2 type=MMA charge= 0.10 end ATOM HAC3 type=MMA charge= 0.10 end bond N HN bond N CA bond CA HA bond CA CB bond CB HB1 bond CB HB2 bond CB SG ! bond SG HG bond CA C bond C O bond SG SAA !yizhou bond CAG HAG !yizhou bond CAH HAH1 bond CAH HAH2 bond CAE HAE1 bond CAE HAE2 bond CAE HAE3 bond CAF HAF1 bond CAF HAF2 bond CAF HAF3 bond CAC HAC1 bond CAC HAC2 bond CAC HAC3 bond CAD HAD1 bond CAD HAD2 bond CAD HAD3 BOND CAE CAL BOND CAL CAF BOND CAL NAI BOND CAL CAJ BOND NAI OAB BOND NAI CAK ! BOND OAB HAA BOND CAK CAC BOND CAK CAD BOND CAK CAG BOND CAG CAJ BOND CAJ CAH BOND CAH SAA ANGLE CAE CAL CAF ANGLE CAE CAL NAI ANGLE CAE CAL CAJ ANGLE CAF CAL NAI ANGLE CAF CAL CAJ ANGLE NAI CAL CAJ ANGLE CAL NAI OAB ANGLE CAL NAI CAK ANGLE OAB NAI CAK ! ANGLE NAI OAB HAA ANGLE NAI CAK CAC ANGLE NAI CAK CAD ANGLE NAI CAK CAG ANGLE CAC CAK CAD ANGLE CAC CAK CAG ANGLE CAD CAK CAG ANGLE CAK CAG CAJ ANGLE CAL CAJ CAG ANGLE CAL CAJ CAH ANGLE CAG CAJ CAH ANGLE CAJ CAH SAA ANGLE CAH SAA SG angle SAA SG CB !yizhou angle HAG CAG CAK !yizhou angle HAG CAG CAJ !yizhou ! IMPROPER CAJ CAL CAG CAH ! IMPROPER CAL CAE CAF NAI ! IMPROPER CAK NAI CAD CAC IMPROPER NAI CAL OAB CAK IMPROPER HAH1 HAH2 SAA CAJ IMPROPER HAE1 HAE2 CAL HAE3 IMPROPER HAF1 HAF2 CAL HAF3 IMPROPER HAC1 HAC2 CAK HAC3 IMPROPER HAD1 HAD2 CAK HAD3 ! DIHEDRAL CAE CAL NAI CAK ! DIHEDRAL CAE CAL CAJ CAH ! DIHEDRAL CAL NAI OAB HAA ! DIHEDRAL CAG CAK NAI CAL ! DIHEDRAL NAI CAK CAG CAJ ! DIHEDRAL CAK CAG CAJ CAH DIHEDRAL CAL CAJ CAH SAA ! DIHEDRAL SG SAA CAH CAJ ! dihedral OAB NAI CAL CAJ dihedral HAG CAG CAJ CAL !yizhou improper HA N C CB !chirality CA improper HB1 HB2 CA SG !stereo CB dihedral SG CB CA N end residue C2M group atom N type=NH1 charge=-0.36 end atom HN type=H charge= 0.26 end atom CA type=CH1E charge= 0.00 end atom HA type=HA charge= 0.10 end atom CB type=CH2E charge=-0.20 end atom HB1 type=HA charge= 0.10 end atom HB2 type=HA charge= 0.10 end atom SG type=SH1E charge=-0.05 end ! atom HG type=H charge= 0.05 end atom C type=C charge= 0.48 end atom O type=O charge=-0.48 end ATOM CAE TYPE= CMAE CHARGE= 0.016 END ATOM CAL TYPE= CMAL CHARGE= 0.097 END ATOM CAF TYPE= CMAF CHARGE= 0.016 END ATOM NAI TYPE= NMAI CHARGE=-0.164 END ATOM OAB TYPE= OMAB CHARGE=-0.114 END ! ATOM HAA TYPE= MMAA CHARGE= 0.029 END ATOM CAK TYPE= CMAK CHARGE= 0.097 END ATOM CAC TYPE= CMAC CHARGE= 0.016 END ATOM CAD TYPE= CMAD CHARGE= 0.016 END ATOM CAG TYPE= CMAG CHARGE=-0.042 END ATOM CAJ TYPE= CMAJ CHARGE=-0.011 END ATOM CAH TYPE= CMAH CHARGE= 0.038 END ATOM SAA TYPE= SMAA CHARGE= 0.041 END ATOM CBE TYPE= CMAE CHARGE= 0.016 END ATOM CBL TYPE= CMAL CHARGE= 0.097 END ATOM CBF TYPE= CMAF CHARGE= 0.016 END ATOM NBI TYPE= NMAI CHARGE=-0.164 END ATOM OBB TYPE= OMAB CHARGE=-0.114 END ATOM CBK TYPE= CMAK CHARGE= 0.097 END ATOM CBC TYPE= CMAC CHARGE= 0.016 END ATOM CBD TYPE= CMAD CHARGE= 0.016 END ATOM CBG TYPE= CMAG CHARGE=-0.042 END ATOM CBJ TYPE= CMAJ CHARGE=-0.011 END ATOM CBH TYPE= CMAH CHARGE= 0.038 END ATOM SBA TYPE= SMAA CHARGE= 0.041 END ! ATOM SBG type=SM1E charge=-0.05 end ATOM HAG TYPE = MMA charge= 0.14 end !yizhou ATOM HAH1 type=MMA charge= 0.10 end ATOM HAH2 type=MMA charge= 0.10 end ATOM HAE1 type=MMA charge= 0.10 end ATOM HAE2 type=MMA charge= 0.10 end ATOM HAE3 type=MMA charge= 0.10 end ATOM HAF1 type=MMA charge= 0.10 end ATOM HAF2 type=MMA charge= 0.10 end ATOM HAF3 type=MMA charge= 0.10 end ATOM HAD1 type=MMA charge= 0.10 end ATOM HAD2 type=MMA charge= 0.10 end ATOM HAD3 type=MMA charge= 0.10 end ATOM HAC1 type=MMA charge= 0.10 end ATOM HAC2 type=MMA charge= 0.10 end ATOM HAC3 type=MMA charge= 0.10 end ATOM HBG TYPE = MMA charge= 0.14 end !yizhou ATOM HBH1 type=MMA charge= 0.10 end ATOM HBH2 type=MMA charge= 0.10 end ATOM HBE1 type=MMA charge= 0.10 end ATOM HBE2 type=MMA charge= 0.10 end ATOM HBE3 type=MMA charge= 0.10 end ATOM HBF1 type=MMA charge= 0.10 end ATOM HBF2 type=MMA charge= 0.10 end ATOM HBF3 type=MMA charge= 0.10 end ATOM HBD1 type=MMA charge= 0.10 end ATOM HBD2 type=MMA charge= 0.10 end ATOM HBD3 type=MMA charge= 0.10 end ATOM HBC1 type=MMA charge= 0.10 end ATOM HBC2 type=MMA charge= 0.10 end ATOM HBC3 type=MMA charge= 0.10 end bond N HN bond N CA bond CA HA bond CA CB bond CB HB1 bond CB HB2 bond CB SG ! bond SG HG bond CA C bond C O bond SG SAA !yizhou bond CAG HAG !yizhou bond CAH HAH1 bond CAH HAH2 bond CAE HAE1 bond CAE HAE2 bond CAE HAE3 bond CAF HAF1 bond CAF HAF2 bond CAF HAF3 bond CAC HAC1 bond CAC HAC2 bond CAC HAC3 bond CAD HAD1 bond CAD HAD2 bond CAD HAD3 BOND CAE CAL BOND CAL CAF BOND CAL NAI BOND CAL CAJ BOND NAI OAB BOND NAI CAK ! BOND OAB HAA BOND CAK CAC BOND CAK CAD BOND CAK CAG BOND CAG CAJ BOND CAJ CAH BOND CAH SAA ! bond CB SG ! bond SG HG ! bond SG SBA !yizhou bond SG SBA bond CBG HBG !yizhou bond CBH HBH1 bond CBH HBH2 bond CBE HBE1 bond CBE HBE2 bond CBE HBE3 bond CBF HBF1 bond CBF HBF2 bond CBF HBF3 bond CBC HBC1 bond CBC HBC2 bond CBC HBC3 bond CBD HBD1 bond CBD HBD2 bond CBD HBD3 BOND CBE CBL BOND CBL CBF BOND CBL NBI BOND CBL CBJ BOND NBI OBB BOND NBI CBK ! BOND OBB HBA BOND CBK CBC BOND CBK CBD BOND CBK CBG BOND CBG CBJ BOND CBJ CBH BOND CBH SBA ANGLE CAE CAL CAF ANGLE CAE CAL NAI ANGLE CAE CAL CAJ ANGLE CAF CAL NAI ANGLE CAF CAL CAJ ANGLE NAI CAL CAJ ANGLE CAL NAI OAB ANGLE CAL NAI CAK ANGLE OAB NAI CAK ! ANGLE NAI OAB HAA ANGLE NAI CAK CAC ANGLE NAI CAK CAD ANGLE NAI CAK CAG ANGLE CAC CAK CAD ANGLE CAC CAK CAG ANGLE CAD CAK CAG ANGLE CAK CAG CAJ ANGLE CAL CAJ CAG ANGLE CAL CAJ CAH ANGLE CAG CAJ CAH ANGLE CAJ CAH SAA ANGLE CAH SAA SG angle SAA SG CB !yizhou angle HAG CAG CAK !yizhou angle HAG CAG CAJ !yizhou ANGLE CBE CBL CBF ANGLE CBE CBL NBI ANGLE CBE CBL CBJ ANGLE CBF CBL NBI ANGLE CBF CBL CBJ ANGLE NBI CBL CBJ ANGLE CBL NBI OBB ANGLE CBL NBI CBK ANGLE OBB NBI CBK ! ANGLE NBI OBB HBA ANGLE NBI CBK CBC ANGLE NBI CBK CBD ANGLE NBI CBK CBG ANGLE CBC CBK CBD ANGLE CBC CBK CBG ANGLE CBD CBK CBG ANGLE CBK CBG CBJ ANGLE CBL CBJ CBG ANGLE CBL CBJ CBH ANGLE CBG CBJ CBH ANGLE CBJ CBH SBA ANGLE CBH SBA SG angle SBA SG CB !yizhou angle HBG CBG CBK !yizhou angle HBG CBG CBJ !yizhou ! IMPROPER CAJ CAL CAG CAH ! IMPROPER CAL CAE CAF NAI ! IMPROPER CAK NAI CAD CAC IMPROPER NAI CAL OAB CAK IMPROPER NBI CBL OBB CBK IMPROPER HAH1 HAH2 SAA CAJ IMPROPER HAE1 HAE2 CAL HAE3 IMPROPER HAF1 HAF2 CAL HAF3 IMPROPER HAC1 HAC2 CAK HAC3 IMPROPER HAD1 HAD2 CAK HAD3 IMPROPER HBH1 HBH2 SBA CBJ IMPROPER HBE1 HBE2 CBL HBE3 IMPROPER HBF1 HBF2 CBL HBF3 IMPROPER HBC1 HBC2 CBK HBC3 IMPROPER HBD1 HBD2 CBK HBD3 ! DIHEDRAL CAE CAL NAI CAK ! DIHEDRAL CAE CAL CAJ CAH ! DIHEDRAL CAL NAI OAB HAA ! DIHEDRAL CAG CAK NAI CAL ! DIHEDRAL NAI CAK CAG CAJ ! DIHEDRAL CAK CAG CAJ CAH DIHEDRAL CAL CAJ CAH SAA ! DIHEDRAL SG SAA CAH CAJ ! dihedral OAB NAI CAL CAJ dihedral HAG CAG CAJ CAL !yizhou dihedral HBG CBG CBJ CBL !yizhou improper HA N C CB !chirality CA improper HB1 HB2 CA SG !stereo CB dihedral SG CB CA N end residue C3M group atom N type=NH1 charge=-0.36 end atom HN type=H charge= 0.26 end atom CA type=CH1E charge= 0.00 end atom HA type=HA charge= 0.10 end atom CB type=CH2E charge=-0.20 end atom HB1 type=HA charge= 0.10 end atom HB2 type=HA charge= 0.10 end atom SG type=SH1E charge=-0.05 end ! atom HG type=H charge= 0.05 end atom C type=C charge= 0.48 end atom O type=O charge=-0.48 end ATOM CAE TYPE= CMAE CHARGE= 0.016 END ATOM CAL TYPE= CMAL CHARGE= 0.097 END ATOM CAF TYPE= CMAF CHARGE= 0.016 END ATOM NAI TYPE= NMAI CHARGE=-0.164 END ATOM OAB TYPE= OMAB CHARGE=-0.114 END ! ATOM HAA TYPE= MMAA CHARGE= 0.029 END ATOM CAK TYPE= CMAK CHARGE= 0.097 END ATOM CAC TYPE= CMAC CHARGE= 0.016 END ATOM CAD TYPE= CMAD CHARGE= 0.016 END ATOM CAG TYPE= CMAG CHARGE=-0.042 END ATOM CAJ TYPE= CMAJ CHARGE=-0.011 END ATOM CAH TYPE= CMAH CHARGE= 0.038 END ATOM SAA TYPE= SMAA CHARGE= 0.041 END ATOM CBE TYPE= CMAE CHARGE= 0.016 END ATOM CBL TYPE= CMAL CHARGE= 0.097 END ATOM CBF TYPE= CMAF CHARGE= 0.016 END ATOM NBI TYPE= NMAI CHARGE=-0.164 END ATOM OBB TYPE= OMAB CHARGE=-0.114 END ATOM CBK TYPE= CMAK CHARGE= 0.097 END ATOM CBC TYPE= CMAC CHARGE= 0.016 END ATOM CBD TYPE= CMAD CHARGE= 0.016 END ATOM CBG TYPE= CMAG CHARGE=-0.042 END ATOM CBJ TYPE= CMAJ CHARGE=-0.011 END ATOM CBH TYPE= CMAH CHARGE= 0.038 END ATOM SBA TYPE= SMAA CHARGE= 0.041 END ! ATOM SBG type=SM1E charge=-0.05 end ATOM CCE TYPE= CMAE CHARGE= 0.016 END ATOM CCL TYPE= CMAL CHARGE= 0.097 END ATOM CCF TYPE= CMAF CHARGE= 0.016 END ATOM NCI TYPE= NMAI CHARGE=-0.164 END ATOM OCB TYPE= OMAB CHARGE=-0.114 END ATOM CCK TYPE= CMAK CHARGE= 0.097 END ATOM CCC TYPE= CMAC CHARGE= 0.016 END ATOM CCD TYPE= CMAD CHARGE= 0.016 END ATOM CCG TYPE= CMAG CHARGE=-0.042 END ATOM CCJ TYPE= CMAJ CHARGE=-0.011 END ATOM CCH TYPE= CMAH CHARGE= 0.038 END ATOM SCA TYPE= SMAA CHARGE= 0.041 END ! ATOM SCG type=SM1E charge=-0.05 end ATOM HAG TYPE = MMA charge= 0.14 end !yizhou ATOM HAH1 type=MMA charge= 0.10 end ATOM HAH2 type=MMA charge= 0.10 end ATOM HAE1 type=MMA charge= 0.10 end ATOM HAE2 type=MMA charge= 0.10 end ATOM HAE3 type=MMA charge= 0.10 end ATOM HAF1 type=MMA charge= 0.10 end ATOM HAF2 type=MMA charge= 0.10 end ATOM HAF3 type=MMA charge= 0.10 end ATOM HAD1 type=MMA charge= 0.10 end ATOM HAD2 type=MMA charge= 0.10 end ATOM HAD3 type=MMA charge= 0.10 end ATOM HAC1 type=MMA charge= 0.10 end ATOM HAC2 type=MMA charge= 0.10 end ATOM HAC3 type=MMA charge= 0.10 end ATOM HBG TYPE = MMA charge= 0.14 end !yizhou ATOM HBH1 type=MMA charge= 0.10 end ATOM HBH2 type=MMA charge= 0.10 end ATOM HBE1 type=MMA charge= 0.10 end ATOM HBE2 type=MMA charge= 0.10 end ATOM HBE3 type=MMA charge= 0.10 end ATOM HBF1 type=MMA charge= 0.10 end ATOM HBF2 type=MMA charge= 0.10 end ATOM HBF3 type=MMA charge= 0.10 end ATOM HBD1 type=MMA charge= 0.10 end ATOM HBD2 type=MMA charge= 0.10 end ATOM HBD3 type=MMA charge= 0.10 end ATOM HBC1 type=MMA charge= 0.10 end ATOM HBC2 type=MMA charge= 0.10 end ATOM HBC3 type=MMA charge= 0.10 end ATOM HCG TYPE = MMA charge= 0.14 end !yizhou ATOM HCH1 type=MMA charge= 0.10 end ATOM HCH2 type=MMA charge= 0.10 end ATOM HCE1 type=MMA charge= 0.10 end ATOM HCE2 type=MMA charge= 0.10 end ATOM HCE3 type=MMA charge= 0.10 end ATOM HCF1 type=MMA charge= 0.10 end ATOM HCF2 type=MMA charge= 0.10 end ATOM HCF3 type=MMA charge= 0.10 end ATOM HCD1 type=MMA charge= 0.10 end ATOM HCD2 type=MMA charge= 0.10 end ATOM HCD3 type=MMA charge= 0.10 end ATOM HCC1 type=MMA charge= 0.10 end ATOM HCC2 type=MMA charge= 0.10 end ATOM HCC3 type=MMA charge= 0.10 end bond N HN bond N CA bond CA HA bond CA CB bond CB HB1 bond CB HB2 bond CB SG ! bond SG HG bond CA C bond C O bond SG SAA !yizhou bond CAG HAG !yizhou bond CAH HAH1 bond CAH HAH2 bond CAE HAE1 bond CAE HAE2 bond CAE HAE3 bond CAF HAF1 bond CAF HAF2 bond CAF HAF3 bond CAC HAC1 bond CAC HAC2 bond CAC HAC3 bond CAD HAD1 bond CAD HAD2 bond CAD HAD3 BOND CAE CAL BOND CAL CAF BOND CAL NAI BOND CAL CAJ BOND NAI OAB BOND NAI CAK ! BOND OAB HAA BOND CAK CAC BOND CAK CAD BOND CAK CAG BOND CAG CAJ BOND CAJ CAH BOND CAH SAA ! bond CB SG ! bond SG HG ! bond SG SBA !yizhou bond SG SBA bond CBG HBG !yizhou bond CBH HBH1 bond CBH HBH2 bond CBE HBE1 bond CBE HBE2 bond CBE HBE3 bond CBF HBF1 bond CBF HBF2 bond CBF HBF3 bond CBC HBC1 bond CBC HBC2 bond CBC HBC3 bond CBD HBD1 bond CBD HBD2 bond CBD HBD3 BOND CBE CBL BOND CBL CBF BOND CBL NBI BOND CBL CBJ BOND NBI OBB BOND NBI CBK ! BOND OBB HBA BOND CBK CBC BOND CBK CBD BOND CBK CBG BOND CBG CBJ BOND CBJ CBH BOND CBH SBA bond SG SCA bond CCG HCG !yizhou bond CCH HCH1 bond CCH HCH2 bond CCE HCE1 bond CCE HCE2 bond CCE HCE3 bond CCF HCF1 bond CCF HCF2 bond CCF HCF3 bond CCC HCC1 bond CCC HCC2 bond CCC HCC3 bond CCD HCD1 bond CCD HCD2 bond CCD HCD3 BOND CCE CCL BOND CCL CCF BOND CCL NCI BOND CCL CCJ BOND NCI OCB BOND NCI CCK ! BOND OCB HCA BOND CCK CCC BOND CCK CCD BOND CCK CCG BOND CCG CCJ BOND CCJ CCH BOND CCH SCA ANGLE CAE CAL CAF ANGLE CAE CAL NAI ANGLE CAE CAL CAJ ANGLE CAF CAL NAI ANGLE CAF CAL CAJ ANGLE NAI CAL CAJ ANGLE CAL NAI OAB ANGLE CAL NAI CAK ANGLE OAB NAI CAK ! ANGLE NAI OAB HAA ANGLE NAI CAK CAC ANGLE NAI CAK CAD ANGLE NAI CAK CAG ANGLE CAC CAK CAD ANGLE CAC CAK CAG ANGLE CAD CAK CAG ANGLE CAK CAG CAJ ANGLE CAL CAJ CAG ANGLE CAL CAJ CAH ANGLE CAG CAJ CAH ANGLE CAJ CAH SAA ANGLE CAH SAA SG angle SAA SG CB !yizhou angle HAG CAG CAK !yizhou angle HAG CAG CAJ !yizhou BOND CCK CCC BOND CCK CCD BOND CCK CCG BOND CCG CCJ BOND CCJ CCH BOND CCH SCA ANGLE CAE CAL CAF ANGLE CAE CAL NAI ANGLE CAE CAL CAJ ANGLE CAF CAL NAI ANGLE CAF CAL CAJ ANGLE NAI CAL CAJ ANGLE CAL NAI OAB ANGLE CAL NAI CAK ANGLE OAB NAI CAK ! ANGLE NAI OAB HAA ANGLE NAI CAK CAC ANGLE NAI CAK CAD ANGLE NAI CAK CAG ANGLE CAC CAK CAD ANGLE CAC CAK CAG ANGLE CAD CAK CAG ANGLE CAK CAG CAJ ANGLE CAL CAJ CAG ANGLE CAL CAJ CAH ANGLE CAG CAJ CAH ANGLE CAJ CAH SAA ANGLE CAH SAA SG angle SAA SG CB !yizhou angle HAG CAG CAK !yizhou angle HAG CAG CAJ !yizhou angle SAA SG SBA angle SAA SG SCA angle SBA SG SCA ! IMPROPER CAJ CAL CAG CAH ! IMPROPER CAL CAE CAF NAI ! IMPROPER CAK NAI CAD CAC IMPROPER NAI CAL OAB CAK IMPROPER NBI CBL OBB CBK IMPROPER NCI CCL OCB CCK IMPROPER HAH1 HAH2 SAA CAJ IMPROPER HAE1 HAE2 CAL HAE3 IMPROPER HAF1 HAF2 CAL HAF3 IMPROPER HAC1 HAC2 CAK HAC3 IMPROPER HAD1 HAD2 CAK HAD3 IMPROPER HBH1 HBH2 SBA CBJ IMPROPER HBE1 HBE2 CBL HBE3 IMPROPER HBF1 HBF2 CBL HBF3 IMPROPER HBC1 HBC2 CBK HBC3 IMPROPER HBD1 HBD2 CBK HBD3 IMPROPER HCH1 HCH2 SCA CCJ IMPROPER HCE1 HCE2 CCL HCE3 IMPROPER HCF1 HCF2 CCL HCF3 IMPROPER HCC1 HCC2 CCK HCC3 IMPROPER HCD1 HCD2 CCK HCD3 ! DIHEDRAL CAE CAL NAI CAK ! DIHEDRAL CAE CAL CAJ CAH ! DIHEDRAL CAL NAI OAB HAA ! DIHEDRAL CAG CAK NAI CAL ! DIHEDRAL NAI CAK CAG CAJ ! DIHEDRAL CAK CAG CAJ CAH DIHEDRAL CAL CAJ CAH SAA ! DIHEDRAL SG SAA CAH CAJ ! dihedral OAB NAI CAL CAJ dihedral HAG CAG CAJ CAL !yizhou dihedral HBG CBG CBJ CBL !yizhou dihedral HCG CCG CCJ CCL !yizhou improper HA N C CB !chirality CA improper HB1 HB2 CA SG !stereo CB dihedral SG CB CA N end
Apply the following lines to protein-allhdg.param
! param for MTSL evaluate ($pd_x = 1.0) eval ($pd_v=$pd_x* 16000.0) BOND CMAE CMAL $pd_v {sd= 0.001} 1.530 eval ($pd_v=$pd_x* 16000.0) BOND CMAL CMAF $pd_v {sd= 0.001} 1.530 eval ($pd_v=$pd_x* 18000.0) BOND CMAL NMAI $pd_v {sd= 0.001} 1.468 eval ($pd_v=$pd_x* 16000.0) BOND CMAL CMAJ $pd_v {sd= 0.001} 1.516 eval ($pd_v=$pd_x* 12000.0) BOND NMAI OMAB $pd_v {sd= 0.001} 1.318 eval ($pd_v=$pd_x* 18000.0) BOND NMAI CMAK $pd_v {sd= 0.001} 1.463 eval ($pd_v=$pd_x* 15000.0) BOND OMAB MMAA $pd_v {sd= 0.001} 1.000 eval ($pd_v=$pd_x* 16000.0) BOND CMAK CMAC $pd_v {sd= 0.001} 1.530 eval ($pd_v=$pd_x* 16000.0) BOND CMAK CMAD $pd_v {sd= 0.001} 1.530 eval ($pd_v=$pd_x* 16000.0) BOND CMAK CMAG $pd_v {sd= 0.001} 1.506 eval ($pd_v=$pd_x* 16000.0) BOND CMAG CMAJ $pd_v {sd= 0.001} 1.338 eval ($pd_v=$pd_x* 16000.0) BOND CMAJ CMAH $pd_v {sd= 0.001} 1.530 eval ($pd_v=$pd_x* 18000.0) BOND CMAH SMAA $pd_v {sd= 0.001} 1.830 eval ($pd_v=$pd_x* 15000.0) BOND SMAA SH1E $pd_v {sd= 0.001} 2.030 eval ($pd_v=$pd_x* 15000.0) BOND CMAG MMA $pd_v {sd= 0.001} 1.000 BOND CMAH MMA 1000.000 {sd= 0.001} 1.080 BOND CMAC MMA 1000.000 {sd= 0.001} 1.080 BOND CMAD MMA 1000.000 {sd= 0.001} 1.080 BOND CMAE MMA 1000.000 {sd= 0.001} 1.080 BOND CMAF MMA 1000.000 {sd= 0.001} 1.080 ! BOND CH2E SH1E 1000.000 {sd= 0.001} 1.808 eval ($pd_v=$pd_x* 880.0) ANGLE CMAE CMAL CMAF $pd_v {sd= 0.031} 109.130 eval ($pd_v=$pd_x* 880.0) ANGLE CMAE CMAL NMAI $pd_v {sd= 0.031} 108.044 eval ($pd_v=$pd_x* 760.0) ANGLE CMAE CMAL CMAJ $pd_v {sd= 0.031} 111.354 eval ($pd_v=$pd_x* 880.0) ANGLE CMAF CMAL NMAI $pd_v {sd= 0.031} 113.418 eval ($pd_v=$pd_x* 760.0) ANGLE CMAF CMAL CMAJ $pd_v {sd= 0.031} 109.251 eval ($pd_v=$pd_x* 880.0) ANGLE NMAI CMAL CMAJ $pd_v {sd= 0.031} 105.635 eval ($pd_v=$pd_x* 720.0) ANGLE CMAL NMAI OMAB $pd_v {sd= 0.031} 115.650 eval ($pd_v=$pd_x* 880.0) ANGLE CMAL NMAI CMAK $pd_v {sd= 0.031} 104.000 eval ($pd_v=$pd_x* 720.0) ANGLE OMAB NMAI CMAK $pd_v {sd= 0.031} 106.714 eval ($pd_v=$pd_x* 760.0) ANGLE NMAI OMAB MMAA $pd_v {sd= 0.031} 109.500 eval ($pd_v=$pd_x* 880.0) ANGLE NMAI CMAK CMAC $pd_v {sd= 0.031} 113.839 eval ($pd_v=$pd_x* 880.0) ANGLE NMAI CMAK CMAD $pd_v {sd= 0.031} 109.317 eval ($pd_v=$pd_x* 880.0) ANGLE NMAI CMAK CMAG $pd_v {sd= 0.031} 105.283 eval ($pd_v=$pd_x* 880.0) ANGLE CMAC CMAK CMAD $pd_v {sd= 0.031} 109.700 eval ($pd_v=$pd_x* 760.0) ANGLE CMAC CMAK CMAG $pd_v {sd= 0.031} 108.346 eval ($pd_v=$pd_x* 760.0) ANGLE CMAD CMAK CMAG $pd_v {sd= 0.031} 110.253 eval ($pd_v=$pd_x* 800.0) ANGLE CMAK CMAG CMAJ $pd_v {sd= 0.031} 110.468 eval ($pd_v=$pd_x* 800.0) ANGLE CMAL CMAJ CMAG $pd_v {sd= 0.031} 108.765 eval ($pd_v=$pd_x* 800.0) ANGLE CMAL CMAJ CMAH $pd_v {sd= 0.031} 120.000 eval ($pd_v=$pd_x* 800.0) ANGLE CMAG CMAJ CMAH $pd_v {sd= 0.031} 126.000 eval ($pd_v=$pd_x* 880.0) ANGLE CMAJ CMAH SMAA $pd_v {sd= 0.031} 111.000 eval ($pd_v=$pd_x* 760.0) ANGLE CMAH SMAA SH1E $pd_v {sd= 0.031} 103.8 eval ($pd_v=$pd_x* 760.0) ANGLE SMAA SH1E CH2E $pd_v {sd= 0.031} 103.8 !yizhou eval ($pd_v=$pd_x* 800.0) ANGLE MMA CMAG CMAK $pd_v {sd= 0.031} 126.8575 !yizhou eval ($pd_v=$pd_x* 800.0) ANGLE MMA CMAG CMAJ $pd_v {sd= 0.031} 122.675 !yizhou ! ANGLE SM1E CH2E SM1E 0.0 {sd= 0.031} 0.000 ANGLE SMAA SH1E SMAA 0.0 {sd= 0.031} 110.000 ANGLe MMA CMAH MMA 500.00 {sd= 0.031} 109.4074 ANGLe MMA CMAC MMA 500.00 {sd= 0.031} 109.4703 ANGLe MMA CMAD MMA 500.00 {sd= 0.031} 109.4703 ANGLe MMA CMAE MMA 500.00 {sd= 0.031} 109.4703 ANGLe MMA CMAF MMA 500.00 {sd= 0.031} 109.4703 ANGLe CMAJ CMAH MMA 500.00 {sd= 0.031} 108.7236 ANGLe MMA CMAH SMAA 500.00 {sd= 0.031} 107.9228 ANGLe CMAL CMAE MMA 500.00 {sd= 0.031} 109.4726 ANGLe CMAL CMAF MMA 500.00 {sd= 0.031} 109.4726 ANGLe CMAK CMAC MMA 500.00 {sd= 0.031} 109.4726 ANGLe CMAK CMAD MMA 500.00 {sd= 0.031} 109.4726 ! ANGLe HA CH2E SM1E 500.00 {sd= 0.031} 107.9185 ! ANGLe CH1E CH2E SM1E 500.00 {sd= 0.031} 114.3558 eval ($pd_v=$pd_x* 800.0) IMPR CMAJ CMAL CMAG CMAH $pd_v 0 0.000 eval ($pd_v=$pd_x* 400.0) IMPR CMAL CMAE CMAF NMAI $pd_v 0 35.264 eval ($pd_v=$pd_x* 400.0) IMPR NMAI CMAL OMAB CMAK $pd_v {sd= 2.0} 0 -35.264 eval ($pd_v=$pd_x* 400.0) IMPR CMAK NMAI CMAC CMAD $pd_v {sd= 0.031} 0 35.264 IMPR MMA MMA SMAA CMAJ 500.00 {sd= 0.031} 0 -70.7825 IMPR MMA MMA CMAL MMA 500.00 {sd= 0.031} 0 -66.5692 IMPR MMA MMA CMAK MMA 500.00 {sd= 0.031} 0 -66.5692 ! IMPRoper HA HA CH1E SM1E 500.00 {sd= 0.031} 0 -72.0234 eval ($pd_v=$pd_x* 0) DIHE CMAE CMAL NMAI CMAK $pd_v 3 0.000 eval ($pd_v=$pd_x* 0) DIHE CMAE CMAL CMAJ CMAH $pd_v 6 0.000 !eval ($pd_v=$pd_x* 0.9) DIHE CMAL NMAI OMAB MMAA $pd_v 3 0.000 eval ($pd_v=$pd_x* 8.1) DIHE CMAG CMAK NMAI CMAL $pd_v 3 0.000 eval ($pd_v=$pd_x* 0.1) DIHE NMAI CMAK CMAG CMAJ $pd_v 6 0.000 eval ($pd_v=$pd_x* 19.6) DIHE CMAK CMAG CMAJ CMAH $pd_v 2 180.000 eval ($pd_v=$pd_x* 0) DIHE CMAL CMAJ CMAH SMAA $pd_v 6 0.000 !eval ($pd_v=$pd_x* 4.9) DIHE SM1E SMAA CMAH CMAJ $pd_v 3 0.000 eval ($pd_v=$pd_x* 19.6) DIHE MMA CMAG CMAJ CMAL $pd_v 2 180.000 !yizhou eval ($pd_v=$pd_x* 19.6) DIHE OMAB NMAI CMAL CMAJ $pd_v {sd= 0.031} 2 -146.7663 !yizhou ! DIHEdral NH1 CH1E CH2E SM1E 0.00 {sd= 0.031} 3 0.0000 !NBONds ! TOLERANCE=0.5 NBXMOD=5 WMIN=1.5 ! REPEL=1.0 REXPONENT=4 IREXPONENT=1 RCONST=16.0 ! CTONNB=5.5 CTOFNB=6.0 CUTNB=7.0 !END NONBONDED CMAE 0.10000 3.29633 0.10000 3.02906 NONBONDED CMAL 0.10000 3.29633 0.10000 3.02906 NONBONDED CMAF 0.10000 3.29633 0.10000 3.02906 NONBONDED NMAI 0.10000 2.67270 0.10000 2.40543 NONBONDED OMAB 0.10000 2.58361 0.10000 2.31634 NONBONDED MMAA 0.10000 1.42544 0.10000 1.15817 NONBONDED CMAK 0.10000 3.29633 0.10000 3.02906 NONBONDED CMAC 0.10000 3.29633 0.10000 3.02906 NONBONDED CMAD 0.10000 3.29633 0.10000 3.02906 NONBONDED CMAG 0.10000 3.29633 0.10000 3.02906 NONBONDED CMAJ 0.10000 3.29633 0.10000 3.02906 NONBONDED CMAH 0.10000 3.29633 0.10000 3.02906 NONBONDED SMAA 0.10000 3.20724 0.10000 2.93997 NONBONDED MMA 0.10000 1.42544 0.10000 1.15817 !NONBONDED SM1E 0.10000 3.20724 0.10000 2.93997
Invoking pseudo-residues
In the protein sequence file, use “CYSM” to represent a cysteine residue conjugated to a MTSL molecule. If MTSL chain mobility is considered for ensemble averaging, use “C2M” or “C3M”, which allows averaging for 2 or 3 MTSL conformers.
Generate psf/mtf file and an extended pdb structure from the primary sequence, and examine the pseudo-residue structure by your favorite PDB viewer.
Ensemble averaging of PRE
Basics
(1)
Where Ne is the number of ensemble states, i.e. the number of conformers the protein has, Nm is the number of MTSL conformers used to represent chain mobility, e.g. Nm =3 if C3M is used, rij is the distance between the unpaired electron (approximated by MTSL oxygen OAB/OBB/OCB) and a proton for the i-th protein conformer and the j-th MTSL conformer.
To relate <r-6> to PRE, use Solomon-Bloembergen (SB) equation for delta R2:
(2)
Where,
(3)
Range of validity: Eq(3) is a good approximation when the amplitude of internal motions, including the motion among the protein and MTSL conformers, is small or when the time-scale of these motions is significantly longer than that of the global tumbling. For motions of both large amplitude and short time-scale, a more accurate description is by the SBMF equation [5]. It should be noted that the error from Eq(3) in the latter case is in the relaxation space, i.e., in <r-6>. The propagated error in the distance space r, which is of more interest to us for structure purpose, is usually quite small.
Implementation in Xplor-nih
Dealing with averaging
Xplor-nih-python provides a nice interface for using ensemble averaged potential energy.
To create such an instance,
from ensembleSimulation import EnsembleSimulation esim = EnsembleSimulation("ensemble",ensembleSize)
ensembleSize is an integer number which specifies the number of alternative protein conformers, i.e., Ne in Eq (1).
To add an energy term to the potential list, such as PRE, do the following
(Read the inline comments on certain commands):
potList = PotList() !initiate the potential list for esim. This needs to be done only once import prePot pre1=prePot.PREPot("PRE_CT_1",open("pre_CT_1.tbl").read(),"normal") pre2=prePot.PREPot("PRE_CT_2",open("pre_CT_2.tbl").read(),"normal") pre3=prePot.PREPot("PRE_NT_1",open("pre_NT_1.tbl").read(),"normal") pre4=prePot.PREPot("PRE_NT_2",open("pre_NT_2.tbl").read(),"normal") ! There are 4 pre input files. Read them into 4 pre pot terms, pre1, pre2, pre3, and pre4. ! You can combine them into one, but keeping separate is easier to manage. allpre = (pre1,pre2,pre3,pre4) tauc=30 ! tauc is 30ns. Tauc can be measured or estimated based on protein size. for pre in allpre: !Define equation and parameters for PRE back-calcualtion pre.setEquType("sb") !Use Solomon-Bloembergen equation pre.setAveType("r-6") ! Averaging type for ambiguous PRE assignment pre.setSclType("obsig") pre.setRlxType("r2dd") pre.setGammaI(26.752196) pre.setSqn(0.5) pre.setGfac(2.0) pre.setTcType("fix") pre.setTauC(tauc) print " setting for ", pre.instanceName() potList.add(pre) ! Add pre into potlist for ensemble averaging. pass
Note that so far we only specified averaging of protein conformers, but we haven’t done so for MTSL conformers. To do this, we can use ambiguous assignment in the pre input file, such as “pre_CT_1.tbl”
assign (resid 149 and name HN) (resid 117 and (name OAB or name OBB or name OCB)) 106.2 6.1
Where, resid 117 is a C3M residue. The 106.2 ± 6.1 s-1 PRE on HN of resid 149 is <r-6> averaged by the 3 MTSL conformers with electron position represented by OAB, OBB, and OCB respectively. This averaging type is specified by “pre.setAveType("r-6")” in the pre setup loop.
Remove van der waals interaction among MTSL conformers
Note that the MTSL conformers are used to simulate motions, so they must not interfere with each other. Meanwhile, multiple MTSL labels are not simultaneously on the protein, therefore they shouldn’t interfere either. However, MTSL clash with native residues on the protein should be avoided. To express this in xplor language:
command(“”” vector identity ( store1 ) (chemical MM* or chemical CM* or chemical OM* or chemical NM* or chemical SM*) vector identity ( store2 ) (known and not (store1 or (resname ANI))) constraints interaction (store1) (store1) weights * 1 vdw 0 end interaction (store2) (known and not (resname ANI)) weights * 1 angl %f impr %f end “””)
Semi-Rigid-body dynamics
PRE is frequently used to dock two proteins of known structures. In this case, both proteins can be treated as rigid bodies during simulated annealing while the MTSL chains are variable. To realize this:
command(""" vector identity (store8) (name N or name HN or name CA or name HA or name C or name O) """) dyn.group( select('resid 17:178 and ((store8) or not (resid 176 or resid 117 or resid 83 or resid 55 or resid 59)) '))
In the example above, there are 5 C3M residues, 176, 117, 83, 55, and 59. Their side-chains are mobile. All other residues are grouped and therefore rigid.
To ensemble or not to ensemble
Some potential terms are not intended for ensemble averaging. Most of these are generic Xplor potentials, such as bond and angle energies. To signify this, use the “AvePot” command before adding them to the potential list.
potList.append( AvePot(XplorPot,"BOND") )
As a second example, NOEs may be treated as averaged between different protein conformers, or simply treated as related to each member individually, depending on how you want to treat them. For the former case,
enoe = create_NOEPot('enoe','noe.tbl') potList.append( enoe )
For the latter case,
potList.append( AvePot(XplorPot,"NOE") )
References
2. Schwieters, C.D., Kuszewski, J.J., and Clore, G.M. (2006). Using Xplor-NIH for NMR molecular structure determination. Prog. NMR Spect. 48, 47-62.