NOE Calibration Using CYANA: Difference between revisions
No edit summary |
No edit summary |
||
Line 54: | Line 54: | ||
<br> | <br> | ||
{| rules="rows" cellspacing="0" cellpadding="0" border="1 | {| rules="rows" cellspacing="0" cellpadding="0" border="1" style="width: 638px; height: 76px;" id="table1" class="twikiTable" | ||
|- class="twikiTableOdd twikiTableRowdataBgSorted0 twikiTableRowdataBg0" | |- class="twikiTableOdd twikiTableRowdataBgSorted0 twikiTableRowdataBg0" | ||
! valign="top" bgcolor="#687684" class="twikiTableCol0 twikiFirstCol" | <font color="#ffffff">class</font> | ! valign="top" bgcolor="#687684" class="twikiTableCol0 twikiFirstCol" | <font color="#ffffff">class</font> | ||
Line 188: | Line 188: | ||
<br> | <br> | ||
=== Verifying Initial NOE Calibration === | === Verifying Initial NOE Calibration === | ||
Inspect resulting UPL files to make sure the the calibration is correct. You should avoid making UPLs too tight or too loose. | Inspect resulting UPL files to make sure the the calibration is correct. You should avoid making UPLs too tight or too loose. | ||
Known short-range distances in the secondary structure elements constitute good reference points. Consult the table below (adapted in short form from | Known short-range distances in the secondary structure elements constitute good reference points. Consult the table below (adapted in short form from Ref. 1). | ||
<br> | |||
{| rules="rows" cellspacing="0" cellpadding="0" border="1 | {| rules="rows" cellspacing="0" cellpadding="0" border="1" style="width: 556px; height: 151px;" id="table2" class="twikiTable" | ||
|- class="twikiTableOdd twikiTableRowdataBgSorted0 twikiTableRowdataBg0" | |- class="twikiTableOdd twikiTableRowdataBgSorted0 twikiTableRowdataBg0" | ||
! valign="top" bgcolor="#687684" class="twikiTableCol0 twikiFirstCol" | | ! valign="top" bgcolor="#687684" class="twikiTableCol0 twikiFirstCol" | | ||
<font color="#ffffff">distance</font><font color="#ffffff"></font> | <font color="#ffffff">distance</font><font color="#ffffff"></font> | ||
! valign="top" bgcolor="#687684" class="twikiTableCol1" | | ! valign="top" bgcolor="#687684" class="twikiTableCol1" | | ||
<font color="#ffffff">α-helix</font><font color="#ffffff"></font><br> | <font color="#ffffff">α-helix</font><font color="#ffffff"></font><br> | ||
! valign="top" bgcolor="#687684" class="twikiTableCol2" | | ! valign="top" bgcolor="#687684" class="twikiTableCol2" | | ||
<font color="#ffffff">3_10-helix</font><font color="#ffffff"></font><br> | <font color="#ffffff">3_10-helix</font><font color="#ffffff"></font><br> | ||
! valign="top" bgcolor="#687684" class="twikiTableCol3" | | ! valign="top" bgcolor="#687684" class="twikiTableCol3" | | ||
<font color="#ffffff">β-sheet (A)</font><font color="#ffffff"></font><br> | <font color="#ffffff">β-sheet (A)</font><font color="#ffffff"></font><br> | ||
! valign="top" bgcolor="#687684" class="twikiTableCol4 twikiLastCol" | | ! valign="top" bgcolor="#687684" class="twikiTableCol4 twikiLastCol" | | ||
[http://www.nsm.buffalo.edu/Chem/HTP_twiki43/bin/view/NESG/NOECalibrationCYANA?sortcol=4;table=2;up=0#sorted_table <font color="#ffffff">β-sheet (P)</font>]<font color="#ffffff"></font><br> | [http://www.nsm.buffalo.edu/Chem/HTP_twiki43/bin/view/NESG/NOECalibrationCYANA?sortcol=4;table=2;up=0#sorted_table <font color="#ffffff">β-sheet (P)</font>]<font color="#ffffff"></font><br> | ||
|- class="twikiTableEven twikiTableRowdataBgSorted0 twikiTableRowdataBg0" | |- class="twikiTableEven twikiTableRowdataBgSorted0 twikiTableRowdataBg0" | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol0 twikiFirstCol" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol0 twikiFirstCol" | | ||
d_αN<br> | d_αN<br> | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol1" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol1" | | ||
3.5<br> | 3.5<br> | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol2" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol2" | | ||
3.4<br> | 3.4<br> | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol3" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol3" | | ||
2.2<br> | 2.2<br> | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol4 twikiLastCol" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol4 twikiLastCol" | | ||
2.2<br> | 2.2<br> | ||
|- class="twikiTableOdd twikiTableRowdataBgSorted1 twikiTableRowdataBg1" | |- class="twikiTableOdd twikiTableRowdataBgSorted1 twikiTableRowdataBg1" | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol0 twikiFirstCol" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol0 twikiFirstCol" | | ||
d_αN(i,i+2)<br> | d_αN(i,i+2)<br> | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol1" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol1" | | ||
4.4<br> | 4.4<br> | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol2" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol2" | | ||
3.8<br> | 3.8<br> | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol3" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol3" | | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol4 twikiLastCol" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol4 twikiLastCol" | | ||
|- class="twikiTableEven twikiTableRowdataBgSorted0 twikiTableRowdataBg0" | |- class="twikiTableEven twikiTableRowdataBgSorted0 twikiTableRowdataBg0" | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol0 twikiFirstCol" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol0 twikiFirstCol" | | ||
d_αN(i,i+3)<br> | d_αN(i,i+3)<br> | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol1" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol1" | | ||
3.4<br> | 3.4<br> | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol2" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol2" | | ||
3.3<br> | 3.3<br> | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol3" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol3" | | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol4 twikiLastCol" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol4 twikiLastCol" | | ||
|- class="twikiTableOdd twikiTableRowdataBgSorted1 twikiTableRowdataBg1" | |- class="twikiTableOdd twikiTableRowdataBgSorted1 twikiTableRowdataBg1" | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol0 twikiFirstCol" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol0 twikiFirstCol" | | ||
d_αN(i,i+4)<br> | d_αN(i,i+4)<br> | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol1" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol1" | | ||
4.2<br> | 4.2<br> | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol2" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol2" | | ||
3.3<br> | 3.3<br> | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol3" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol3" | | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol4 twikiLastCol" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol4 twikiLastCol" | | ||
|- class="twikiTableEven twikiTableRowdataBgSorted0 twikiTableRowdataBg0" | |- class="twikiTableEven twikiTableRowdataBgSorted0 twikiTableRowdataBg0" | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol0 twikiFirstCol" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol0 twikiFirstCol" | | ||
d_NN<br> | d_NN<br> | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol1" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol1" | | ||
2.8<br> | 2.8<br> | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol2" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol2" | | ||
2.6<br> | 2.6<br> | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol3" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol3" | | ||
4.3<br> | 4.3<br> | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol4 twikiLastCol" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol4 twikiLastCol" | | ||
4.2<br> | 4.2<br> | ||
|- class="twikiTableOdd twikiTableRowdataBgSorted1 twikiTableRowdataBg1" | |- class="twikiTableOdd twikiTableRowdataBgSorted1 twikiTableRowdataBg1" | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol0 twikiFirstCol twikiLast" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol0 twikiFirstCol twikiLast" | | ||
d_NN(i,i+2)<br> | d_NN(i,i+2)<br> | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol1 twikiLast" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol1 twikiLast" | | ||
4.2<br> | 4.2<br> | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol2 twikiLast" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol2 twikiLast" | | ||
4.1<br> | 4.1<br> | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol3 twikiLast" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol3 twikiLast" | | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol4 twikiLastCol twikiLast" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol4 twikiLastCol twikiLast" | | ||
|} | |} | ||
For calibration of aromatic peaklists the characteristic distances are: | For calibration of aromatic peaklists the characteristic distances are: | ||
<br> | |||
{| rules="rows" cellspacing="0" cellpadding="0" border="1" style="width: 285px; height: 106px;" id="table3" class="twikiTable" | |||
{| rules="rows" cellspacing="0" cellpadding="0" border="1 | |||
|- class="twikiTableOdd twikiTableRowdataBgSorted0 twikiTableRowdataBg0" | |- class="twikiTableOdd twikiTableRowdataBgSorted0 twikiTableRowdataBg0" | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol0 twikiFirstCol" | <br> | | valign="top" bgcolor="#ffffff" class="twikiTableCol0 twikiFirstCol" | <br> | ||
! valign="top" bgcolor="#687684" class="twikiTableCol1" | | ! valign="top" bgcolor="#687684" class="twikiTableCol1" | | ||
<font color="#ffffff">distance</font><font color="#ffffff"></font> | <font color="#ffffff">distance</font><font color="#ffffff"></font> | ||
! valign="top" bgcolor="#687684" class="twikiTableCol2 twikiLastCol" | | ! valign="top" bgcolor="#687684" class="twikiTableCol2 twikiLastCol" | | ||
<font color="#ffffff">center averaging</font><font color="#ffffff"></font> | <font color="#ffffff">center averaging</font><font color="#ffffff"></font> | ||
|- class="twikiTableEven twikiTableRowdataBgSorted1 twikiTableRowdataBg1" | |- class="twikiTableEven twikiTableRowdataBgSorted1 twikiTableRowdataBg1" | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol0 twikiFirstCol" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol0 twikiFirstCol" | | ||
d_δβ | d_δβ | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol1" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol1" | | ||
2.33 - 3.77 | 2.33 - 3.77 | ||
| valign="top" bgcolor="#edf4f9" class="twikiTableCol2 twikiLastCol" | | | valign="top" bgcolor="#edf4f9" class="twikiTableCol2 twikiLastCol" | | ||
5.00 - 6.75 | 5.00 - 6.75 | ||
|- class="twikiTableOdd twikiTableRowdataBgSorted0 twikiTableRowdataBg0" | |- class="twikiTableOdd twikiTableRowdataBgSorted0 twikiTableRowdataBg0" | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol0 twikiFirstCol twikiLast" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol0 twikiFirstCol twikiLast" | | ||
d_δε | d_δε | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol1 twikiLast" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol1 twikiLast" | | ||
2.48 | 2.48 | ||
| valign="top" bgcolor="#ffffff" class="twikiTableCol2 twikiLastCol twikiLast" | | | valign="top" bgcolor="#ffffff" class="twikiTableCol2 twikiLastCol twikiLast" | | ||
7.4 | 7.4 | ||
|} | |} | ||
Line 332: | Line 332: | ||
Note that aromatic QD and QE are pseudoatoms and the constraints in "center" averaging mode are much larger than the distances between individual atoms. | Note that aromatic QD and QE are pseudoatoms and the constraints in "center" averaging mode are much larger than the distances between individual atoms. | ||
<br> | |||
== '''References''' == | |||
1. Wuthrich, K. (1986) "NMR of Proteins and Nucleic Acids", page 127. |
Revision as of 23:32, 13 November 2009
Introduction
NOE calibration converts NOESY cross-peak intensities into upper distance limits. A certain functional relationship is assumed between peak intensities and UPLs for a given group of peaks. The most common is NOE peak volume proportional to interproton distance to the minus six:
V = A/d^6
where V
is the peak volume (or intensity), d
is the upper distance limit, and A
is the calibration constant.
NOE Calibration Using CYANA 2.1
This section describes how to determine NOE calibration constants using CYANA 2.1.
Before running the calibration, the N chemical shifts in the peak list must be updated, and the peak lists separated into a list of N noes and C noes, using the UBNMR macro, macro1.
Command "calibrate"
A CYANA command calibrate
is the basic calibration tool, unchanged since DYANA.
Parameters: f(d) (required) dmin [d2 ...] dmax (default: 2.4 5.5) weight=w (default: 1.0) plot=file log minimal (default: none)
calibrate
accepts a calibration function f(d)
as the required argument.
This command uses "center" averaging. Explicit pseudoatom corrections are added to UPLs:
- Multiplicity correction is applied by dividing the peak volume by the numbers of 1H spins in pseudoatoms assigned to the peak. For instance, the volume of a cross peak between a Leu QQD pseudo atom and a Tyr QD pseudo atom is divided by a factor of 6 x 2 = 12 prior to applying the calibration function. The resulting UPL is the subject to the upper and lower cutoffs.
- Distance correction is applied by adding a distance between the pseudoatom and its constituent spins. It is applied after the application of upper and lower cutoffs. For example, for a Tyr QD pseudoatom this correction is equal to half the distance between the HD1 and HD2 spins. Distance correction can be manually performed with the
distance correct
command.
Type help calibrate
at CYANA prompt for more information or see the DYANA documentation.
Macro "caliba"
CYANA macro caliba.cya
is functionally the same as caliba.dya
of DYANA. It is a more sophisticated calibration tool aimed at getting more nuanced calibration than a uniform 1/d
6
dependence. CALIBA is recommended for manual structure calculation with CYANA 2.1. The caliba
macro in fact uses calibrate
, therefore, it also uses "center" averaging.
Caliba parameters: dmin=dmin (default: 2.4) dmax=dmax (default: 5.5) vmin=Vmin (default: 0.0) bb=A (default: calculated automatically) sc=B (default: A/dmin2) methyl=C (default: B/3) weight=w (default: 1.0) avedis=d (default: 3.4) plot=file (optional)
This macro divides each peaklist into three classes of peaks with different calibration functions and constants:
class | peaks/constraints | function |
---|---|---|
backbone |
all HN/HA— HN/HA, and HN(i)/HA(i) — HB(j) with abs(i - j) < 5 |
|
sidechain |
neither "backbone" nor "methyl" |
|
methyl |
all involving methyl groups |
|
By default, constant A
is calculated from avedis
- the assumed average distance between backbone atoms. It is also possible to specify the backbone constant A
explicitly. Constant B
is then calculated from A
, and C
from B
Parameters dmin
and dmax
are the lower and upper cutoff limits for UPLs, respectively.
Parameter vmin
is useful to filter out peaks with intensities below a certain threshold. Without it even incorrectly picked peaks with intensities below S/N level will produce UPLs set at the upper cutoff.
plot
is an optional parameter, used to create logarithmic plots of volumes versus corresponding minimal distances in the selected structures together with the calibration functions. It is useful for fine-tuning the calibration during structure refinement. Of course, a structure must be then loaded into CYANA before running caliba
.
VERY IMPORTANT!!!. The default behavior of structure calculation (anneal
, calc_all
, noeassign
) in CYANA 2.x is to use "sum of r-6" averaging for UPLs. Setting expand=1
declares "sum of r-6" averaging, and expand=0
declares "center" averaging. If your UPLs reflect "center" averaging (that is, they were created with caliba
or calibrate
), then
- They can be used with DYANA, CYANA 1.x and AutoStructure.
- They can be used with legacy macros in CYANA 2.1, such as
habas
. - They can be used for manual structure calculation in CYANA 2.1, if
expand=0
is set before callinganneal
. - Do not use them for automated structure calculation in CYANA 2.1 with
noeassign
. Thenoeassign
macro employspeaks calibrate
(see below) and setsexapand=1
. In general, do not mix them with UPLs calibrated withpeaks calibrate
.
Type help caliba
at CYANA prompt or see the DYANA manual for more information. You can also look at the script itself in the macro
subdirectory of a CYANA installation.
Command "peaks calibrate"
Command peaks calibrate
is a new feature of CYANA 2.x, which produced a "sum of r-6"-averaged calibration. The documentation for it is scarce. For example, the manual structure calculation script ~/demo/manual/CALC.cya
contains these lines:
peaks := c13,n15,aro # names of peak lists prot := demo # names of proton lists tolerance := 0.040,0.030,0.45 # chemical shift tolerances # order: 1H(a), 1H(b), 13C/15N(b), 13C/15N(a) calibration:= 6.7E5,8.2E5,8.0E4 # calibration constants (will be determined # automatically, if commented out) dref := 4.2 # average upper distance limit for # automatic calibration calibration prot=$prot peaks=$peaks constant=$calibration dref=$dref peaks calibrate "**" simple write upl $name-in.upl
Line calibration prot=$prot peaks=$peaks constant=$calibration dref=$dref
calls the macro calibration.cya
, which iteratively sets calibration constants for each peaklist. If the calibration
list variable is defined, its values are taken as calibration constants. If it is left blank, calibration constants are calibrated based on assumed average distance dref
between all atoms of the molecule. Note that dref
here is inherently different from avedis
of caliba
- the latter refers only to distances between backbone
protons.
Line peaks calibrate "**" simple
generates UPLs assuming simple C/d^6
functions with calibration constants C
from the previous step. These calibration constants are thus closely related the "backbone" class constants A
of caliba
.
To modify upper and lower cutoffs for NOE calibration with peaks calibrate
add a line set upl_values:=2.4,6.0
. The defaults are 2.4 and 5.5.
The main difference from calibrate
and caliba
is that pseudoatom correction are not applied to resulting UPLs.
VERY IMPORTANT!!!. The default behavior of structure calculation (anneal
, calc_all
, noeassign
) in CYANA 2.x is to use "sum of r-6" averaging for UPLs. Setting expand=1
declares "sum of r-6" averaging, and expand=0
declares "center" averaging. If you UPLs use "sum of r-6" averaging (if created with peaks calibrate
), then
- Do not use them with DYANA, CYANA 1.x and AutoStructure.
- Do not use them with legacy macros in CYANA 2.1, such as
habas
. - They can be used for manual structure calculation in CYANA 2.1, if
expand=1
is set before callinganneal
. - They can be used for automated structure calculation in CYANA 2.1 with
noeassign
. Thenoeassign
macro employspeaks calibrate
(see below) and setsexpand=1
.
The aim of this new calibration method is likely to facilitate automated NOE assignment and structure calculation with noeassign
. Unlike caliba
and calibrate
, peaks calibrate
effectively generates UPLs even for unassigned peaks assuming NOEs between single protons. If such a peak gets assigned to a pseudoatom, the required correction is applied implicitly during the calculation.
Initial NOE Calibration
After simulating and filtering one typically has three initial NOESY peaklists, for example, n.peaks
, ali.peaks
, and aro.peaks
. The assigned peaks are intra-residue and short-range within secondary structure elements. Initial calibration is needed to verify these assignments for consistency with molecular geometry and, if possible, to derive stereospecific assignments with HABAS in CYANA. If your SequenceList and AtomList were generated with XEASY, you will need to convert them to the format of CYANA 2.1 (see the ~/demo/details/MigrateFromDyanaCyana1.cya
example script). SequenceList and AtomList from CARA are already compatible.
Amide, aliphatic and aromatic protons tend to have different relaxation properties in a simultaneous 3D 15N-, 13C-resolved NOESY. NOESY spectra acquired separately may have varying acquisition times. Therefore, it is recommended to run caliba
separately for each peaklist.
Here is a sample run_caliba.cya script for running caliba
on all three peaklists:
protocol:=caliba.log read prot $name read peaks n peaks select "**" peaks set volume=abs(volume) caliba read peaks ali peaks select "**" peaks set volume=abs(volume) caliba read peaks aro peaks select "**" peaks set volume=abs(volume) caliba bb=1.0E+06 write upl short.upl protocol:=
Note that you need to convert volumes to absolute values before calling caliba
, otherwise negative intensities will be misinterpreted.
Macro caliba
should work fine for n.peaks
and ali.peaks
with default parameters. Aromatic peaklist aro.peaks
requires special treatment because it does not have any peaks of the backbone class. For aromatic peaklists caliba
should be run either with a single bb
parameter or with both bb
and sc
parameters. Calling it without bb
parameter will cause an error.
The sc
and bb
parameters for aro.peaks
can be estimated from the aliphatic calibration. Typically the aromatic part of the simultaneous NOESY spectrum is less sensitive than the aromatic, therefore the values should be somewhat lower.
Verifying Initial NOE Calibration
Inspect resulting UPL files to make sure the the calibration is correct. You should avoid making UPLs too tight or too loose.
Known short-range distances in the secondary structure elements constitute good reference points. Consult the table below (adapted in short form from Ref. 1).
distance |
α-helix |
3_10-helix |
β-sheet (A) |
|
---|---|---|---|---|
d_αN |
3.5 |
3.4 |
2.2 |
2.2 |
d_αN(i,i+2) |
4.4 |
3.8 |
||
d_αN(i,i+3) |
3.4 |
3.3 |
||
d_αN(i,i+4) |
4.2 |
3.3 |
||
d_NN |
2.8 |
2.6 |
4.3 |
4.2 |
d_NN(i,i+2) |
4.2 |
4.1 |
For calibration of aromatic peaklists the characteristic distances are:
distance |
center averaging | |
---|---|---|
d_δβ |
2.33 - 3.77 |
5.00 - 6.75 |
d_δε |
2.48 |
7.4 |
Note that aromatic QD and QE are pseudoatoms and the constraints in "center" averaging mode are much larger than the distances between individual atoms.
References
1. Wuthrich, K. (1986) "NMR of Proteins and Nucleic Acids", page 127.