Protein purification: Difference between revisions
mNo edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
For each protein, we usually make the following samples: | For each protein, we usually make the following samples: | ||
*[U-<sup>15</sup>N, <sup>13</sup>C]-labeled sample, for resonance assignment and NOE interpretation. | *[''U''-<sup>15</sup>N, <sup>13</sup>C]-labeled sample, for resonance assignment and NOE interpretation. | ||
*A U-<sup>15</sup>N and fractional 5%-<sup>13</sup>C-labeled sample for stereospecific assignment of Val and Leu isopropyl methyl groups based on the method of Neri et. al. (Biochemistry 28, 7510-7516,1989) that we call the NC5 sample. This sample is prepared using 5% U[<sup>1</sup>H,<sup>13</sup>C]-D-glucose and 95% unlabelled glucose in the ''E. coli'' minimal growth media.<br> | * | ||
A U-<sup>15</sup>N and fractional 5%-<sup>13</sup>C-labeled sample for stereospecific assignment of Val and Leu isopropyl methyl groups based on the method of Neri et. al. (Biochemistry 28, 7510-7516,1989) that we call the NC5 sample. This sample is prepared using 5% ''U''[<sup>1</sup>H,<sup>13</sup>C]-D-glucose and 95% unlabelled glucose in the ''E. coli'' minimal growth media. | |||
The NC5 sample is not [''U''-5%-<sup>13</sup>C,''U''-<sup>15</sup>N] since it is not uniformly 5% -<sup>13</sup>C labeled. The incorporation of <sup>13</sup>C in the methyl groups is biosynthetically directed by the ''E. coli''. | |||
This sample can be called:<br> | |||
<style><!-- /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0in; margin-bottom:.0001pt; text-align:justify; mso-pagination:widow-orphan; font-size:11.0pt; mso-bidi-font-size:10.0pt; font-family:"Times New Roman"; mso-ascii-font-family:Helvetica; mso-fareast-font-family:"Times New Roman"; mso-hansi-font-family:Helvetica; mso-bidi-font-family:"Times New Roman";} @page Section1 {size:8.5in 11.0in; margin:1.0in 1.25in 1.0in 1.25in; mso-header-margin:.5in; mso-footer-margin:.5in; mso-paper-source:0;} div.Section1 {page:Section1;} --> </style> ''<span style="font-size:11.0pt;mso-bidi-font-size:10.0pt;font-family:Helvetica; | |||
mso-fareast-font-family:"Times New Roman";mso-bidi-font-family:"Times New Roman"; | |||
mso-ansi-language:EN-US;mso-fareast-language:EN-US">U</span>''<span style="font-size:11.0pt;mso-bidi-font-size:10.0pt;font-family:Helvetica; | |||
mso-fareast-font-family:"Times New Roman";mso-bidi-font-family:"Times New Roman"; | |||
mso-ansi-language:EN-US;mso-fareast-language:EN-US">-<sup>15</sup>N, 5% | |||
biosynthetically directed <sup>13</sup>C (NC5) sample or</span> | |||
''<span style="font-size:11.0pt;mso-bidi-font-size:10.0pt;font-family:Helvetica; | |||
mso-fareast-font-family:"Times New Roman";mso-bidi-font-family:"Times New Roman"; | |||
mso-ansi-language:EN-US;mso-fareast-language:EN-US">U</span>''<span style="font-size: 11pt; font-family: Helvetica;">-<sup>15</sup>N, fractional</span> 5%-<sup>13</sup>C-labeled<span style="font-size:11.0pt;mso-bidi-font-size:10.0pt;font-family:Helvetica; | |||
mso-fareast-font-family:"Times New Roman";mso-bidi-font-family:"Times New Roman"; | |||
mso-ansi-language:EN-US;mso-fareast-language:EN-US"> (NC5) sample </span><span style="font-size: 11pt; font-family: Helvetica;"> </span> | |||
<span style="font-size: 11pt; font-family: Helvetica;">and give the Neri reference.</span> | |||
<br> For RDC measurement: | <br> For RDC measurement: |
Revision as of 13:53, 3 May 2011
Samples for NMR
For each protein, we usually make the following samples:
- [U-15N, 13C]-labeled sample, for resonance assignment and NOE interpretation.
A U-15N and fractional 5%-13C-labeled sample for stereospecific assignment of Val and Leu isopropyl methyl groups based on the method of Neri et. al. (Biochemistry 28, 7510-7516,1989) that we call the NC5 sample. This sample is prepared using 5% U[1H,13C]-D-glucose and 95% unlabelled glucose in the E. coli minimal growth media.
The NC5 sample is not [U-5%-13C,U-15N] since it is not uniformly 5% -13C labeled. The incorporation of 13C in the methyl groups is biosynthetically directed by the E. coli.
This sample can be called:
<style><!-- /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0in; margin-bottom:.0001pt; text-align:justify; mso-pagination:widow-orphan; font-size:11.0pt; mso-bidi-font-size:10.0pt; font-family:"Times New Roman"; mso-ascii-font-family:Helvetica; mso-fareast-font-family:"Times New Roman"; mso-hansi-font-family:Helvetica; mso-bidi-font-family:"Times New Roman";} @page Section1 {size:8.5in 11.0in; margin:1.0in 1.25in 1.0in 1.25in; mso-header-margin:.5in; mso-footer-margin:.5in; mso-paper-source:0;} div.Section1 {page:Section1;} --> </style> U-15N, 5% biosynthetically directed 13C (NC5) sample or
U-15N, fractional 5%-13C-labeled (NC5) sample
and give the Neri reference.
For RDC measurement:
- A secondary NC5 sample for RDC measurement.
(Alternatively, for the H-N RDC measurement, a [U-15N]-labeled sample can be used. Rutger's uses a second NC5 sample, since this is all ready being prepared for the stereospecific assignments, and a 13C CHSQC can be compared with the [U-15N, 13C]-labeled sample, to check if the samples are the same.)
For each protein that is a dimer in solution an extra sample may be required in addition to the samples above:
- 1:1 mixture of natural abundance and [U-15N, 13C]-labeled samples, for intermolecular NOE interpretation.
Typical Rutgers University NMR Buffers
The protein production facility at Rutgers University uses these three NMR buffers for the initial protein screening: [1]:
- pH 4.5 NMR buffer: 20 mM NH4OAc, 100 mM NaCl, 10 mM DTT, 5 mM CaCl2, 0.02% NaN3, 5% D2O
- pH 5.5 NMR buffer: 20 mM NH4OAc, 100 mM NaCl, 10 mM DTT, 5 mM CaCl2, 0.02% NaN3, 5% D2O
- pH 6.5 NMR buffer: 20 mM MES, 100 mM NaCl, 5 mM CaCl2, 10 mM DTT, 0.02% NaN3, 5% D2O
Typical Rutgers University Protein Purification Protocol
E.coli BL21(DE3) are fermented in MJ9 medium [2]. Cell pellets are stored at -20º C.
- add 30 ml Lysis buffer to the a frozen cell pellet and thaw.
- sonicate in ice bath
- centrifuge to remove insoluble part
- supernatant is added to an AkTAxpressTM system with a His TrapHP column followed by HiLoad16/60 Superdex 75 gel filtration chromatography.
- exchange buffer to screening buffer by concentrating, diluting with new buffer, reconcentrating to 0.3 - 1.0 mM with Amicon ultrafiltration concentrator (Millipore).
Typical University of Toronto (Arrowsmith proteomics NMR lab) NMR Buffers
Standard screening NMR buffers are:
- a5.0n300zd : 10 mM sodium acetate, pH 5.0, 300 mM NaCl, 10 uM ZnSO4, 10 mM DTT, 0.01 % NaN3, 1 mM benzamidine, 1x inhibitor cocktail, 5% D2O
- m6.5n450zd: 10 mM MOPS, pH 6.5, 450 mM NaCl, 10 uM ZnSO4, 10 mM DTT, 0.01 % NaN3, 1 mM benzamidine, 1x inhibitor cocktail, 5% D2O
- t7.7n500zd : 10 mM tris, pH 7.7, 500 mM NaCl, 10 uM ZnSO4, 10 mM DTT, 0.01 % NaN3, 1 mM benzamidine, 1x inhibitor cocktail, 5% D2O
The final NMR buffer for [U-15N, 13C]-labeled sample depends on the protein of interest. all NMR buffers always contain : 0.01 % NaN3, 1 mM benzamidine, 1x inhibitor cocktail.
(1) If the protein has no cysteine in the sequence, do not bother to add ZnSO4 and DTT (Zn ion will just be a nuisance and deuterated DTT is expensive).
Typical University of Toronto Protein Purification Protocol
Required buffers:
i015t8.5n500z : 15 mM imidazole, 10 mM tris, pH 8.5, 500 mM NaCl, 10 uM ZnSO4
i030t8.5n500z : 30 mM imidazole, 10 mM tris, pH 8.5, 500 mM NaCl, 10 uM ZnSO4
i500t8.5n500z : 500 mM imidazole, 10 mM tris, pH 8.5, 500 mM NaCl, 10 uM ZnSO4
1M DTT
1M benzamidine
- add 25 mL of i015t8.5n500z into a frozen cell pellet and thaw.
- sonicate in ice bath
- spin down cell pellet
- transfer supernatant into new falcon tube and add 3 mL of nickel beads
- rock the tube for at least 30 minutes in cold.
- spin down the beads and discard the supernatant
- wash the beads with i015t8.5n500z twice and with i030t8.5n500z twice
- in the final i030t8.5n500z wash, pour the beads unto gravity filter column
- elute the protein with i500t8.5n500z
- add benzamidine, and add DTT
- exchange buffer by concentrating, diluting with new buffer, reconcentrating in a vivaspin concentrator.
if it is [U-15N, 13C]-labeled, add step
(9a) put sample in dialysis bag with protease to cut his-tag and dialyse against cleavage buffer
(9b) pass the sample through nickel beads again, then follow step (10) above.
References
- ↑ Snyder, D, et.al. (2005). “Comparisons of NMR spectral quality and success in crystallization demonstrate that NMR and X-ray crystallography are complementary methods for small protein structure determination.” JACS, 127: 16505-16511. pmid = 16305237
- ↑ Jansson M, Li YC, Jendeberg L, Anderson S, Montelione GT, Nilsson B (1996) High-level production of uniformly 15N- and 13C-enriched fusion proteins in Escherichia coli. J Biomol NMR 7: 131-141