RDC Refinement with XPLOR-NIH: Difference between revisions

From NESG Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 22: Line 22:
The following files in XPLOR format are required to run the refinement:  
The following files in XPLOR format are required to run the refinement:  


:'''prot_noe.tbl''' NOE restraint table (converted from CYANA upl file using a CYANA to XPLOR conversion script)
:'''prot_noe.tbl''' NOE restraint table  
:'''prot_dihe.tbl''' Dihedral angle restraint (Use CYANA for format conversion)
:'''prot_dihe.tbl''' Dihedral angle restraint
:'''prot_rdc.tbl''' RDC restraint table  
:'''prot_rdc.tbl''' RDC restraint table  
:'''prot_rcsa.tbl''' RCSA restraint table  
:'''prot_rcsa.tbl''' RCSA restraint table  
:'''prot.psf''' and '''prot.pdb''' Startup psf and pdb files were generated using the lowest energy structure from CYANA.
:'''prot.psf''' and '''prot.pdb''' Startup psf and pdb files were generated using the lowest energy structure from CYANA.
<br> An example of the NOE restraint table in XPLOR format is shown below (converted from CYANA upl file using a CYANA to XPLOR conversion script)
<pre>assign ( resid    2 and name HA  )  ( resid    2 and name HD*  )  4.00  2.20  1.00
<pre>assign ( resid    2 and name HA  )  ( resid    2 and name HD*  )  4.00  2.20  1.00
assign ( resid    2 and name HA  )  ( resid    2 and name HG1  )  4.00  2.20  1.00
assign ( resid    2 and name HA  )  ( resid    2 and name HG1  )  4.00  2.20  1.00
Line 33: Line 35:
assign ( resid    2 and name HA  )  ( resid    2 and name HG2  )  4.00  2.20  1.00
assign ( resid    2 and name HA  )  ( resid    2 and name HG2  )  4.00  2.20  1.00
assign ( resid    2 and name HA  )  ( resid    2 and name HG*  )  3.00  1.20  0.50
assign ( resid    2 and name HA  )  ( resid    2 and name HG*  )  3.00  1.20  0.50
</pre>  
</pre>
 
An example of the Dihedral angle restraint in XPLOR format is shown below (Use CYANA for format conversion)
<pre>
<pre>
assign ( resid    7 and name N    )  ( resid    7 and name CA  )  
assign ( resid    7 and name N    )  ( resid    7 and name CA  )  
        (resid    7 and name C    )  ( resid    8 and name N    )  1  -34.00  20.00 2
      (resid    7 and name C    )  ( resid    8 and name N    )  1  -34.00  20.00 2
 
 
assign ( resid    7 and name C    )  ( resid    8 and name N    )  
assign ( resid    7 and name C    )  ( resid    8 and name N    )  
        (resid    8 and name CA  )  ( resid    8 and name C    )  1  -71.00  34.00 2
      (resid    8 and name CA  )  ( resid    8 and name C    )  1  -71.00  34.00 2
 
 
assign ( resid    8 and name N    )  ( resid    8 and name CA  )  
assign ( resid    8 and name N    )  ( resid    8 and name CA  )  
        (resid    8 and name C    )  ( resid    9 and name N    )  1  -41.00  22.00 2
      (resid    8 and name C    )  ( resid    9 and name N    )  1  -41.00  22.00 2
 
</pre>
</pre>
An example


===== Protocol for RDC Refinement  =====
===== Protocol for RDC Refinement  =====

Revision as of 06:22, 15 March 2012

Brief Description

The angular dependence of RDCs and RCSAs can provide valuable structural information that complements NOE distance restraints.
RDCs and RCSAs can be used to:

- Validate protein structures
- Refine protein structures (current topic)
- Provide constraints as a part of an initial structure determination (CYANA 3.0 with RDC)

Here, we describe the RDCs and RCSAs refinement protocol using XPLOR-NIH. The python version of the refinement script was taken from the example dataset (xplor-nih-2.22/eginput/gb1_rdc/refine.py) provided by the XPLOR-NIH package (http://nmr.cit.nih.gov/xplor-nih/). The key features of this refinement are as follow:

- Variable tensor tools for floating the RDC tensors during refinement
- A radius of gyration term to represent the weak packing potential
(This potential is used when the calculated structures are too loosely packed)
- Database potentials of mean force to refine against:
- Multidimensional torsion angles
- Backbone hydrogen bonding database (Optional)


Getting Started

The following files in XPLOR format are required to run the refinement:

prot_noe.tbl NOE restraint table
prot_dihe.tbl Dihedral angle restraint
prot_rdc.tbl RDC restraint table
prot_rcsa.tbl RCSA restraint table
prot.psf and prot.pdb Startup psf and pdb files were generated using the lowest energy structure from CYANA.


An example of the NOE restraint table in XPLOR format is shown below (converted from CYANA upl file using a CYANA to XPLOR conversion script)

assign ( resid    2 and name HA   )   ( resid    2 and name HD*  )   4.00  2.20  1.00
assign ( resid    2 and name HA   )   ( resid    2 and name HG1  )   4.00  2.20  1.00
assign ( resid    2 and name HA   )   ( resid    2 and name HE*  )   4.00  2.20  1.00
assign ( resid    2 and name HD*  )   ( resid    2 and name HE*  )   3.00  1.20  0.50
assign ( resid    2 and name HA   )   ( resid    2 and name HG2  )   4.00  2.20  1.00
assign ( resid    2 and name HA   )   ( resid    2 and name HG*  )   3.00  1.20  0.50

An example of the Dihedral angle restraint in XPLOR format is shown below (Use CYANA for format conversion)

assign ( resid    7 and name N    )   ( resid    7 and name CA   ) 
       (resid    7 and name C    )   ( resid    8 and name N    )  1  -34.00   20.00 2
assign ( resid    7 and name C    )   ( resid    8 and name N    ) 
       (resid    8 and name CA   )   ( resid    8 and name C    )  1  -71.00   34.00 2
assign ( resid    8 and name N    )   ( resid    8 and name CA   ) 
       (resid    8 and name C    )   ( resid    9 and name N    )  1  -41.00   22.00 2

An example

Protocol for RDC Refinement

First, obtain a good estimate of the magnitude of Da and R from alignment tensors using either REDCAT or PALES program and use this as a starting point for the refinement. Then edit the following portion of the refine.py script. Note: text on the same line and following a “#” sign is not read by the XPLOR program.

#                        medium  Da   rhombicity
for (medium,Da,Rh) in [ ('t',   -6.5, 0.62),
                        ('b',   -9.9, 0.23) ]:
    oTensor = create_VarTensor(medium)
    oTensor.setDa(Da)
    oTensor.setRh(Rh)
    media[medium] = oTensor
    pass


The example below contains NH, NCO, and HNC RDCs from two different alignment media. The Da rescaling factor was used since the magnitude of the non-NH RDCs were not normalized to the magnitude of NH RDCs.

from rdcPotTools import create_RDCPot, scale_toNH
rdcs = PotList('rdc')
for (medium,expt,file,                 scale) in \
    [('t','NH' ,'tmv107_nh.tbl'       ,1),
     ('t','NCO','tmv107_nc.tbl'       ,.05),
     ('t','HNC','tmv107_hnc.tbl'      ,.108),
     ('b','NH' ,'bicelles_new_nh.tbl' ,1),
     ('b','NCO','bicelles_new_nc.tbl' ,.05),
     ('b','HNC','bicelles_new_hnc.tbl',.108)
     ]:
    rdc = create_RDCPot("%s_%s"%(medium,expt),file,media[medium])

    #1) scale prefactor relative to NH
    #   see python/rdcPotTools.py for exact calculation
    # scale_toNH(rdc) - not needed for these datasets -
    #                        but non-NH reported rmsd values will be wrong.

    #3) Da rescaling factor (separate multiplicative factor)
    # scale *= ( 1. / rdc.oTensor.Da(0) )**2
    rdc.setScale(scale)
    rdc.setShowAllRestraints(1) #all restraints are printed during analysis
    rdc.setThreshold(1.5)       # in Hz
    rdcs.append(rdc)
    pass
potList.append(rdcs)
rampedParams.append( MultRamp(0.05,5.0, "rdcs.setScale( VALUE )") )


Allow Da and R to float by using the setFreedom method associated with the medium object. To fix the peptide plane, the IVM_groupRigidBackbone tool were used (First two lines and the last line).

from selectTools import IVM_groupRigidBackbone
IVM_groupRigidBackbone(dyn)

for m in media.values():
#    m.setFreedom("fixDa, fixRh")        #fix tensor Rh, Da, vary orientation
    m.setFreedom("varyDa, varyRh")      #vary tensor Rh, Da, vary orientation
protocol.torsionTopology(dyn,oTensors=media.values())

# minc used for final cartesian minimization
#
minc = IVM()
protocol.initMinimize(minc)
IVM_groupRigidBackbone(minc)